1
|
Schneider KH, Oberoi G, Unger E, Janjic K, Rohringer S, Heber S, Agis H, Schedle A, Kiss H, Podesser BK, Windhager R, Toegel S, Moscato F. Medical 3D printing with polyjet technology: effect of material type and printing orientation on printability, surface structure and cytotoxicity. 3D Print Med 2023; 9:27. [PMID: 37768399 PMCID: PMC10540425 DOI: 10.1186/s41205-023-00190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Due to its high printing resolution and ability to print multiple materials simultaneously, inkjet technology has found wide application in medicine. However, the biological safety of 3D-printed objects is not always guaranteed due to residues of uncured resins or support materials and must therefore be verified. The aim of this study was to evaluate the quality of standard assessment methods for determining the quality and properties of polyjet-printed scaffolds in terms of their dimensional accuracy, surface topography, and cytotoxic potential.Standardized 3D-printed samples were produced in two printing orientations (horizontal or vertical). Printing accuracy and surface roughness was assessed by size measurements, VR-5200 3D optical profilometer dimensional analysis, and scanning electron microscopy. Cytotoxicity tests were performed with a representative cell line (L929) in a comparative laboratory study. Individual experiments were performed with primary cells from clinically relevant tissues and with a Toxdent cytotoxicity assay.Dimensional measurements of printed discs indicated high print accuracy and reproducibility. Print accuracy was highest when specimens were printed in horizontal direction. In all cytotoxicity tests, the estimated mean cell viability was well above 70% (p < 0.0001) regardless of material and printing direction, confirming the low cytotoxicity of the final 3D-printed objects.
Collapse
Affiliation(s)
- Karl H Schneider
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Klara Janjic
- University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Sabrina Rohringer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stefan Heber
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Hermann Agis
- University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Andreas Schedle
- University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Bruno K Podesser
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Toegel
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria.
| | - Francesco Moscato
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
2
|
Janjić K, Nemec M, Maaser JL, Sagl B, Jonke E, Andrukhov O. Differential gene expression and protein-protein interaction networks of human periodontal ligament stromal cells under mechanical tension. Eur J Cell Biol 2023; 102:151319. [PMID: 37119575 DOI: 10.1016/j.ejcb.2023.151319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023] Open
Abstract
Orthodontic treatment is based on complex strategies and takes up to years until a desired therapeutic outcome is accomplished, implying long periods of high costs and discomfort for the patient. Choosing the optimal settings for force intensities in the initial phase of orthodontic tooth movement is the key to successful orthodontic treatment. It is known that orthodontic tooth movement is mainly mediated by tensile and compressive forces that are communicated to the alveolar bone via the periodontal ligament. While the revelation of the complex molecular network was already approached by transcriptomic analysis of compressed periodontal ligament cells, the entity of molecular key players activated by tensile forces remains elusive. Therefore, the aim of this study was to assess the effect of mechanical tensile forces on the gene expression profile of human primary periodontal ligament stromal cells, mimicking the initial phase of orthodontic tooth movement. A transcriptomic analysis of tension-treated and untreated periodontal ligament stromal cells yielded 543 upregulated and 793 downregulated differentially expressed genes. Finally, six highly significant genes were found in the transcriptome that are related to biological processes with relevance to orthodontic tooth movement, including apelin, fibroblast growth factor receptor 2, noggin, sulfatase 1, secreted frizzled-related protein 4 and stanniocalcin 1. Additionally, differences of gene expression profiles between individual cell donors showed a high effect size. Closer understanding of the roles of the identified candidates in the initial phase of orthodontic tooth movement could help to clarify the underlying mechanisms, which will be essential for the development of personalized treatment strategies in orthodontics.
Collapse
Affiliation(s)
- Klara Janjić
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; Center of Clinical Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Michael Nemec
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Johanna Louisa Maaser
- Center of Clinical Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Benedikt Sagl
- Center of Clinical Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Erwin Jonke
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Oleh Andrukhov
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Makkar H, Zhou Y, Tan KS, Lim CT, Sriram G. Modeling Crevicular Fluid Flow and Host-Oral Microbiome Interactions in a Gingival Crevice-on-Chip. Adv Healthc Mater 2023; 12:e2202376. [PMID: 36398428 DOI: 10.1002/adhm.202202376] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Gingival crevice and gingival crevicular fluid (GCF) flow play a crucial role at the gingiva-oral microbiome interface which contributes toward maintaining the balance between gingival health and periodontal disease. Interstitial flow of GCF strongly impacts the host-microbiome interactions and tissue responses. However, currently available in vitro preclinical models largely disregard the dynamic nature of gingival crevicular microenvironment, thus limiting the progress in the development of periodontal therapeutics. Here, a proof-of-principle "gingival crevice-on-chip" microfluidic platform to culture gingival connective tissue equivalent (CTE) under dynamic interstitial fluid flow mimicking the GCF is described. On-chip co-culture using oral symbiont (Streptococcus oralis) shows the potential to recapitulate microbial colonization, formation of biofilm-like structures at the tissue-microbiome interface, long-term co-culture, and bacterial clearance secondary to simulated GCF (s-GCF) flow. Further, on-chip exposure of the gingival CTEs to the toll-like receptor-2 (TLR-2) agonist or periodontal pathogen Fusobacterium nucleatum demonstrates the potential to mimic early gingival inflammation. In contrast to direct exposure, the induction of s-GCF flow toward the bacterial front attenuates the secretion of inflammatory mediators demonstrating the protective effect of GCF flow. This proposed in vitro platform offers the potential to study complex host-microbe interactions in periodontal disease and the development of periodontal therapeutics under near-microphysiological conditions.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
| | - Ying Zhou
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore.,ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, 119085, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore.,ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, 119085, Singapore
| |
Collapse
|
4
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
5
|
Makkar H, Atkuru S, Tang YL, Sethi T, Lim CT, Tan KS, Sriram G. Differential immune responses of 3D gingival and periodontal connective tissue equivalents to microbial colonization. J Tissue Eng 2022; 13:20417314221111650. [PMID: 35923175 PMCID: PMC9340411 DOI: 10.1177/20417314221111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Gingival and periodontal ligament fibroblasts are functionally distinct cell
types within the dento-gingival unit that participate in host immune response.
Their microenvironment influences the behavior and immune response to microbial
challenge. We developed three-dimensional gingival and periodontal connective
tissue equivalents (CTEs) using human fibrin-based matrix. The CTEs were
characterized, and the heterogeneity in their innate immune response was
investigated. The CTEs demonstrated no to minimal response to planktonic
Streptococcus mitis and Streptococcus
oralis, while their biofilms elicited a moderate increase in IL-6
and IL-8 production. In contrast, Fusobacterium nucleatum
provoked a substantial increase in IL-6 and IL-8 production. Interestingly, the
gingival CTEs secreted significantly higher IL-6, while periodontal counterparts
produced higher IL-8. In conclusion, the gingival and periodontal CTEs exhibited
differential responses to various bacterial challenges. This gives insights into
the contribution of tissue topography and fibroblast heterogeneity in rendering
protective and specific immune responses toward early biofilm colonizers.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Srividya Atkuru
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Yi Ling Tang
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Tanya Sethi
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
6
|
Behaviour of Human Oral Epithelial Cells Grown on Invisalign ® SmartTrack ® Material. MATERIALS 2020; 13:ma13235311. [PMID: 33255259 PMCID: PMC7727678 DOI: 10.3390/ma13235311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 11/18/2022]
Abstract
Invisalign aligners have been widely used to correct malocclusions, but their effect on oral cells is poorly known. Previous research evaluated the impact of aligners’ eluates on various cells, but the cell behavior in direct contact with aligners is not yet studied. In the present study, we seeded oral epithelial cells (cell line Ca9-22) directly on Invisalign SmartTrack material. This material is composed of polyurethane and co-polyester and exhibit better mechanical characteristics compared to the predecessor. Cell morphology and behavior were investigated by scanning electron microscopy and an optical cell moves analyzer. The effect of aligners on cell proliferation/viability was assessed by cell-counting kit (CCK)-8 and 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) assay and live/dead staining. The expression of inflammatory markers and proteins involved in epithelial barrier function was measured by qPCR. Cells formed cluster-like structures on aligners. The proliferation/viability of cells growing on aligners was significantly lower (p < 0.05) compared to those growing on tissue culture plastic (TCP). Live/dead staining revealed a rare occurrence of dead cells on aligners. The gene expression level of all inflammatory markers in cells grown on aligners’ surfaces was significantly increased (p < 0.05) compared to cells grown on TCP after two days. Gene expression levels of the proteins involved in barrier function significantly increased (p < 0.05) on aligners’ surfaces after two and seven days of culture. Aligners’ material exhibits no cytotoxic effect on oral epithelial cells, but alters their behavior and the expression of proteins involved in the inflammatory response, and barrier function. The clinical relevance of these effects has still to be established.
Collapse
|
7
|
Janjić K, Schädl B, Andrukhov O, Agis H. The response of gingiva monolayer, spheroid, and ex vivo tissue cultures to collagen membranes and bone substitute. J Tissue Eng Regen Med 2020; 14:1307-1317. [PMID: 32652865 PMCID: PMC7539981 DOI: 10.1002/term.3102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Collagen membranes and bone substitute are popular biomaterials in guided tissue regeneration for treatment of traumatized or diseased periodontal tissue. Development of these biomaterials starts in monolayer cell culture, failing to reflect in vivo tissue organization. Spheroid cultures potentially mimic in vivo tissues in structure and functionality. This study aims to compare gingiva cell (GC) monolayers and spheroids to ex vivo gingiva. Human GC monolayers, spheroids and gingiva ex vivo tissues were cultured on plastic surfaces, collagen membranes or bone substitute. Hematoxylin-eosin (HE) staining, immunohistochemistry for KI67 and caspase 3 (CASP3), resazurin-based toxicity assays, quantitative polymerase chain reaction for collagen I (COL1A1), vascular endothelial growth factor (VEGF), angiogenin (ANG), interleukin (IL)6 and IL8 and ELISA for COL1A1, VEGF, ANG, IL6 and IL8 were performed in all cultures. Morphology was different in all culture set-ups. Staining of KI67 was positive in monolayers and staining of CASP3 was positive in spheroids. All culture set-ups were viable. COL1A1 production was modulated in monolayers and ex vivo tissues at mRNA levels, VEGF in monolayers and ex vivo tissues at mRNA levels and in spheroids at protein levels, ANG in spheroids at mRNA levels and in monolayers and spheroids at protein levels, IL6 in monolayers and spheroids at mRNA levels and in spheroids and ex vivo tissues at protein levels and IL8 in monolayers and ex vivo tissues at mRNA levels. Modulations were surface-dependent. In conclusion, each culture model is structurally and functionally different. Neither GC monolayers nor spheroids mimicked gingiva ex vivo tissue in all measured aspects.
Collapse
Affiliation(s)
- Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Barbara Schädl
- Department of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- AUVA Research CenterLudwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
| | - Oleh Andrukhov
- Department of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
8
|
Contraction dynamics of dental pulp cell rod microtissues. Clin Oral Investig 2019; 24:631-638. [PMID: 31115693 DOI: 10.1007/s00784-019-02917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The factors that contribute to the morphological changes of dental pulp cell-derived microtissues are unknown. Here, we investigated the contraction dynamics of rod-shaped microtissues derived from dental pulp cells and examined the underlying cell signaling pathways. METHODS Human dental pulp cells were seeded into agarose molds to assemble into rod-shaped microtissues. Resazurin- and tetrazolium-based cytotoxicity assays, Live/Dead staining, and hematoxylin and eosin staining for histological evaluation of rods were performed. Rod contraction was evaluated and measured for a period of 10 days. The role of TGF-β, phosphoinositide 3-kinase (PI3K)/AKT, and mitogen-activated protein kinase (MAPK) signaling pathway was analyzed. RESULTS Dental pulp cells readily assembled into rods, maintaining the geometric shape for 48 h. Following this period, they condensed to form stable spheroidal structures that remained vital for 10 days from seeding. Inhibition of phosphoinositide 3-kinase signaling pathway by LY294002 significantly prolonged the diminution in the length of rods formed by dental pulp cells. TGF-β and pharmacological inhibition of TGF-β signaling did not show pronounced effects. CONCLUSION Overall, dental pulp cells readily formed rod-shaped patterns of microtissues which, over a period of time, condensed into more stable spheroidal structures. Hence, technologies like bioprinting, using direct fabrication of microtissues need to consider the contraction dynamics. CLINICAL RELEVANCE The field of regenerative endodontology will benefit from our findings as it can be applied as a novel platform to test the impact of pharmacological agents, biomaterials, and regenerative approaches including bioprinting.
Collapse
|