1
|
Alvarez JAE, Jafri MS, Ullah A. Using a Failing Human Ventricular Cardiomyocyte Model to Re-Evaluate Ca 2+ Cycling, Voltage Dependence, and Spark Characteristics. Biomolecules 2024; 14:1371. [PMID: 39595549 PMCID: PMC11591732 DOI: 10.3390/biom14111371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Previous studies have observed alterations in excitation-contraction (EC) coupling during end-stage heart failure that include action potential and calcium (Ca2+) transient prolongation and a reduction of the Ca2+ transient amplitude. Underlying these phenomena are the downregulation of potassium (K+) currents, downregulation of the sarcoplasmic reticulum Ca2+ ATPase (SERCA), increase Ca2+ sensitivity of the ryanodine receptor, and the upregulation of the sodium-calcium (Na=-Ca2+) exchanger. However, in human heart failure (HF), debate continues about the relative contributions of the changes in calcium handling vs. the changes in the membrane currents. To understand the consequences of the above changes, they are incorporated into a computational human ventricular myocyte HF model that can explore the contributions of the spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). The reduction of transient outward K+ current (Ito) is the main membrane current contributor to the decrease in RyR2 open probability and L-type calcium channel (LCC) density which emphasizes its importance to phase 1 of the action potential (AP) shape and duration (APD). During current-clamp conditions, RyR2 hyperphosphorylation exhibits the least amount of Ca2+ release from the SR into the cytosol and SR Ca2+ fractional release during a dynamic slow-rapid-slow (0.5-2.5-0.5 Hz) pacing, but it displays the most abundant and more lasting Ca2+ sparks two-fold longer than a normal cell. On the other hand, under voltage-clamp conditions, HF by decreased SERCA and upregulated INCX show the least SR Ca2+ uptake and EC coupling gain, as compared to HF by hyperphosphorylated RyR2s. Overall, this study demonstrates that the (a) combined effect of SERCA and NCX, and the (b) RyR2 dysfunction, along with the downregulation of the cardiomyocyte's potassium currents, could substantially contribute to Ca2+ mishandling at the spark level that leads to heart failure.
Collapse
Affiliation(s)
- Jerome Anthony E. Alvarez
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC 20375, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
2
|
Ávila G. Fluorofenidone enhances cardiac contractility by stimulating CICR and Ca V1.2. Biochem Biophys Res Commun 2023; 681:242-248. [PMID: 37788591 DOI: 10.1016/j.bbrc.2023.09.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Fluorofenidone (AKF-PD) is a novel pyridone derivative that inhibits fibrosis and inflammation in many tissues. Accordingly, it has been effective in disease models, such as liver failure, nephropathy, and pulmonary fibrosis. However, its potential role in cardiac physiology and pathology has yet to be elucidated. Thus, this paper investigated a possible functional impact of AKF-PD on adult rat cardiac myocytes. Cells were kept in culture for 1-2 days under either control conditions or the presence of AKF-PD (500 μM). They were next examined concerning cell contractility, intracellular Ca2+ homeostasis, and activity of voltage-gated Ca2+ channels. Remarkably, AKF-PD enhanced the percentage of cell shortening and rates of both contraction and relaxation by nearly 100%. A stimulus in Ca2+-induced Ca2+ release (CICR) most likely accounts for these effects because AKF-PD also increased the magnitude of electrically evoked Ca2+ transients. Of note, the compound did not alter the peak value of caffeine-elicited Ca2+ transients, indicating stimulation of CICR at constant sarcoplasmic reticulum Ca2+ load. Since CICR is triggered by the entry of Ca2+ through CaV1.2 (ICa), a possible effect on these Ca2+ channels was also investigated. AKF-PD increased the magnitude of both ICa and maximal macroscopic Ca2+ conductance (Gmax) by about 50%. However, no differences were found in either voltage dependence of inactivation or the amount of maximal immobilization-resistant charge movement (Qmax). Thus, the effect on ICa could be explained by a higher channel's open probability (Po) rather than a greater abundance of channel proteins. Additional data indicate that AKF-PD reduces the rate of Ca2+ extrusion in the presence of caffeine, suggesting inhibition of the Na/Ca exchanger. Overall, these results indicate that AKF-PD upregulates the Po of CaV1.2 and then sequentially enhances ICa, CICR, and contractility. Therefore, the novel compound is also a candidate to be tested in cardiac disease models.
Collapse
Affiliation(s)
- Guillermo Ávila
- Departamento de Bioquímica, Cinvestav-IPN, AP 14-740, México City, 07000, México.
| |
Collapse
|
3
|
Aimo A, Iborra-Egea O, Martini N, Galvez-Monton C, Burchielli S, Panichella G, Passino C, Emdin M, Bayes-Genis A. Cardiac protection by pirfenidone after myocardial infarction: a bioinformatic analysis. Sci Rep 2022; 12:4691. [PMID: 35304529 PMCID: PMC8933518 DOI: 10.1038/s41598-022-08523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Left ventricular (LV) remodeling after myocardial infarction (MI) is promoted by an intense fibrotic response, which could be targeted by the anti-fibrotic drug pirfenidone. We explored the relationship between protein modulation by pirfenidone and post-MI remodeling, based on molecular information and transcriptomic data from a swine model of MI. We identified 6 causative motives of post-MI remodeling (cardiomyocyte cell death, impaired myocyte contractility, extracellular matrix remodeling and fibrosis, hypertrophy, renin–angiotensin–aldosterone system activation, and inflammation), 4 pirfenidone targets and 21 bioflags (indirect effectors). Pirfenidone had a more widespread action than gold-standard drugs, encompassing all 6 motives, with prominent effects on p38γ-MAPK12, the TGFβ1-SMAD2/3 pathway and other effector proteins such as matrix metalloproteases 2 and 14, PDGFA/B, and IGF1. A bioinformatic approach allowed to identify several possible mechanisms of action of pirfenidone with beneficial effects in the post-MI LV remodeling, and suggests additional effects over guideline-recommended therapies.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56124, Pisa, Italy. .,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Oriol Iborra-Egea
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias I Pujol (IGTP), Barcelona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Nicola Martini
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Carolina Galvez-Monton
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias I Pujol (IGTP), Barcelona, Spain
| | - Silvia Burchielli
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giorgia Panichella
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56124, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56124, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56124, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Antoni Bayes-Genis
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias I Pujol (IGTP), Barcelona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Mitochondrial abnormalities: a hub in metabolic syndrome-related cardiac dysfunction caused by oxidative stress. Heart Fail Rev 2021; 27:1387-1394. [PMID: 33950478 PMCID: PMC9197868 DOI: 10.1007/s10741-021-10109-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) refers to a group of cardiovascular risk elements comprising insulin resistance, obesity, dyslipidemia, increased glucose intolerance, and increased blood pressure. Individually, all the MetS components can lead to cardiac dysfunction, while their combination generates additional risks of morbidity and mortality. Growing evidence suggests that oxidative stress, a dominant event in cellular damage and impairment, plays an indispensable role in cardiac dysfunction in MetS. Oxidative stress can not only disrupt mitochondrial activity through inducing oxidative damage to mitochondrial DNA, RNA, lipids, and proteins but can also impair cardiomyocyte contractile function via mitochondria-related oxidative modifications of proteins central to excitation-contraction coupling. Furthermore, excessive reactive oxygen species (ROS) generation can lead to the activation of several mitochondria apoptotic signaling pathways, release of cytochrome c, and eventual induction of myocardial apoptosis. This review will focus on such processes of mitochondrial abnormalities in oxidative stress induced cardiac dysfunction in MetS.
Collapse
|
5
|
Montiel-Jaen MG, Monsalvo-Villegas A, Ávila G. Modulating ALDH2 reveals a differential dependence on ROS for hypertrophy and SR Ca 2+ release in aldosterone-treated cardiac myocytes. Biochem Biophys Res Commun 2021; 536:7-13. [PMID: 33360016 DOI: 10.1016/j.bbrc.2020.12.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Growing evidence links high aldosterone levels with atrial fibrillation and other heart diseases. Here, we have investigated the functional consequences of culturing adult rat atrial myocytes with aldosterone, at the level of cell size, homeostasis of Ca2+, reactive oxygen species (ROS), and nitrogen oxide (NO). The protein levels of NO synthase (NOS), aldehyde dehydrogenase 2 (ALDH2), NADPH oxidase (NOX), and Na+-Ca2+ exchanger (NCX) were also studied. Aldosterone did not alter the expression of these proteins, except for the NCX, which was enhanced by nearly 100%. Additionally, the hormone inhibited and stimulated, respectively, the production of NO and ROS (the effect on ROS appeared after 24 h of treatment and reached a maximum by 4-6 days, with an EC50 of 1.2 nM). These changes in reactive species generation were blunted by tetrahydrobiopterin (BH4, a NOS cofactor), suggesting the involvement of an uncoupled NOS. An activator (Alda-1) and an inhibitor (daidzin) of ALDH2 were used, to determine if this enzyme activity is related to aldosterone effects, through possible modulation of ROS. Aldosterone produced a ∼10% increase in cell size and, remarkably, this hypertrophic effect, along with the corresponding changes in ROS and NO, were all mimicked by daidzin and prevented by Alda-1. Something different happened with SR Ca2+ release. Aldosterone increased both the magnitude of Ca2+ transients and the incidence of spontaneous Ca2+ oscillations, but these actions were not reproduced by daidzin. Moreover, rather than being prevented, they were further promoted by Alda-1, which also increased the rate of SR Ca2+ reuptake. These results suggest that NOS and ALDH2 may prevent some adverse consequences of aldosteronism (in the case of ALDH2, at the expense of exacerbating SR Ca2+ release). Our data also suggest a hierarchical model in which aldosterone promotes: SR Ca2+ release, then ROS production, and finally hypertrophy.
Collapse
|
6
|
Vinten-Johansen J. Commentary: No one drug does only one thing in only one setting. J Thorac Cardiovasc Surg 2019; 158:299-300. [PMID: 30910270 DOI: 10.1016/j.jtcvs.2019.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
|