1
|
Tolnai J, Ballók B, Südy R, Schranc Á, Varga G, Babik B, Fodor GH, Peták F. Changes in lung mechanics and ventilation-perfusion match: comparison of pulmonary air- and thromboembolism in rats. BMC Pulm Med 2024; 24:27. [PMID: 38200483 PMCID: PMC10782734 DOI: 10.1186/s12890-024-02842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Pulmonary air embolism (AE) and thromboembolism lead to severe ventilation-perfusion defects. The spatial distribution of pulmonary perfusion dysfunctions differs substantially in the two pulmonary embolism pathologies, and the effects on respiratory mechanics, gas exchange, and ventilation-perfusion match have not been compared within a study. Therefore, we compared changes in indices reflecting airway and respiratory tissue mechanics, gas exchange, and capnography when pulmonary embolism was induced by venous injection of air as a model of gas embolism or by clamping the main pulmonary artery to mimic severe thromboembolism. METHODS Anesthetized and mechanically ventilated rats (n = 9) were measured under baseline conditions after inducing pulmonary AE by injecting 0.1 mL air into the femoral vein and after occluding the left pulmonary artery (LPAO). Changes in mechanical parameters were assessed by forced oscillations to measure airway resistance, lung tissue damping, and elastance. The arterial partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) were determined by blood gas analyses. Gas exchange indices were also assessed by measuring end-tidal CO2 concentration (ETCO2), shape factors, and dead space parameters by volumetric capnography. RESULTS In the presence of a uniform decrease in ETCO2 in the two embolism models, marked elevations in the bronchial tone and compromised lung tissue mechanics were noted after LPAO, whereas AE did not affect lung mechanics. Conversely, only AE deteriorated PaO2, and PaCO2, while LPAO did not affect these outcomes. Neither AE nor LPAO caused changes in the anatomical or physiological dead space, while both embolism models resulted in elevated alveolar dead space indices incorporating intrapulmonary shunting. CONCLUSIONS Our findings indicate that severe focal hypocapnia following LPAO triggers bronchoconstriction redirecting airflow to well-perfused lung areas, thereby maintaining normal oxygenation, and the CO2 elimination ability of the lungs. However, hypocapnia in diffuse pulmonary perfusion after AE may not reach the threshold level to induce lung mechanical changes; thus, the compensatory mechanisms to match ventilation to perfusion are activated less effectively.
Collapse
Affiliation(s)
- József Tolnai
- Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, H-6720, Hungary
| | - Bence Ballók
- Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, H-6720, Hungary
| | - Roberta Südy
- Unit for Anesthesiological Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1 Rue Michel-Servet, 1206, Geneva, Switzerland
| | - Álmos Schranc
- Unit for Anesthesiological Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1 Rue Michel-Servet, 1206, Geneva, Switzerland
| | - Gabriella Varga
- Institute of Surgical Research, University of Szeged, 1 Pulz utca, Szeged, H-6724, Hungary
| | - Barna Babik
- Department of Anesthesiology and Intensive Therapy, University of Szeged, 6 Semmelweis str., Szeged, H-6725, Hungary
| | - Gergely H Fodor
- Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, H-6720, Hungary
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, H-6720, Hungary.
| |
Collapse
|
2
|
Schranc Á, Balogh ÁL, Diaper J, Südy R, Peták F, Habre W, Albu G. Flow-controlled ventilation maintains gas exchange and lung aeration in a pediatric model of healthy and injured lungs: A randomized cross-over experimental study. Front Pediatr 2022; 10:1005135. [PMID: 36160799 PMCID: PMC9500311 DOI: 10.3389/fped.2022.1005135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Flow-controlled ventilation (FCV) is characterized by a constant flow to generate active inspiration and expiration. While the benefit of FCV on gas exchange has been demonstrated in preclinical and clinical studies with adults, the value of this modality for a pediatric population remains unknown. Thus, we aimed at observing the effects of FCV as compared to pressure-regulated volume control (PRVC) ventilation on lung mechanics, gas exchange and lung aeration before and after surfactant depletion in a pediatric model. Ten anesthetized piglets (10.4 ± 0.2 kg) were randomly assigned to start 1-h ventilation with FCV or PRVC before switching the ventilation modes for another hour. This sequence was repeated after inducing lung injury by bronchoalveolar lavage and injurious ventilation. The primary outcome was respiratory tissue elastance. Secondary outcomes included oxygenation index (PaO2/FiO2), PaCO2, intrapulmonary shunt (Qs/Qt), airway resistance, respiratory tissue damping, end-expiratory lung volume, lung clearance index and lung aeration by chest electrical impedance tomography. Measurements were performed at the end of each protocol stage. Ventilation modality had no effect on any respiratory mechanical parameter. Adequate gas exchange was provided by FCV, similar to PRVC, with sufficient CO2 elimination both in healthy and surfactant-depleted lungs (39.46 ± 7.2 mmHg and 46.2 ± 11.4 mmHg for FCV; 36.0 ± 4.1 and 39.5 ± 4.9 mmHg, for PRVC, respectively). Somewhat lower PaO2/FiO2 and higher Qs/Qt were observed in healthy and surfactant depleted lungs during FCV compared to PRVC (p < 0.05, for all). Compared to PRVC, lung aeration was significantly elevated, particularly in the ventral dependent zones during FCV (p < 0.05), but this difference was not evidenced in injured lungs. Somewhat lower oxygenation and higher shunt ratio was observed during FCV, nevertheless lung aeration improved and adequate gas exchange was ensured. Therefore, in the absence of major differences in respiratory mechanics and lung volumes, FCV may be considered as an alternative in ventilation therapy of pediatric patients with healthy and injured lungs.
Collapse
Affiliation(s)
- Álmos Schranc
- Unit for Anesthesiological Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Ádám L Balogh
- Unit for Anesthesiological Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - John Diaper
- Unit for Anesthesiological Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Roberta Südy
- Unit for Anesthesiological Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Walid Habre
- Unit for Anesthesiological Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland.,Pediatric Anesthesia Unit, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Gergely Albu
- Unit for Anesthesiological Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland.,Division of Anesthesiology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Volumetric capnography pre- and post-surfactant during initial resuscitation of premature infants. Pediatr Res 2022; 91:1551-1556. [PMID: 34023855 PMCID: PMC9197760 DOI: 10.1038/s41390-021-01578-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Volumetric capnography allows for continuous monitoring of expired tidal volume and carbon dioxide. The slope of the alveolar plateau of the capnogram (SIII) could provide information regarding ventilation homogeneity. We aimed to assess the feasibility of measuring SIII during newborn resuscitation and determine if SIII decreased after surfactant indicating ventilation inhomogeneity improvement. METHODS Respiratory function traces of preterm infants resuscitated at birth were analysed. Ten capnograms were constructed for each infant: five pre- and post-surfactant. If a plateau was present SIII was calculated by regression analysis. RESULTS Thirty-six infants were included, median gestational age of 28.7 weeks and birth weight of 1055 g. Average time between pre- and post-surfactant was 3.2 min. Three hundred and sixty capnograms (180 pre and post) were evaluated. There was adequate slope in 134 (74.4%) capnograms pre and in 100 (55.6%) capnograms post-surfactant (p = 0.004). Normalised for tidal volume SIII pre-surfactant was 18.89 mmHg and post-surfactant was 24.86 mmHg (p = 0.006). An increase in SIII produced an up-slanting appearance to the plateau indicating regional obstruction. CONCLUSION It was feasible to evaluate the alveolar plateau pre-surfactant in preterm infants. Ventilation inhomogeneity increased post-surfactant likely due to airway obstruction caused by liquid surfactant present in the airways. IMPACT Volumetric capnography can be used to assess homogeneity of ventilation by SIII analysis. Ventilation inhomogeneity increased immediately post-surfactant administration during the resuscitation of preterm infants, producing a characteristic up-slanting appearance to the alveolar plateau. The best determinant of alveolar plateau presence in preterm infants was the expired tidal volume.
Collapse
|
4
|
Karlsson J, Fodor GH, dos Santos Rocha A, Lin N, Habre W, Wallin M, Hallbäck M, Peták F, Lönnqvist P. Determination of adequate positive end-expiratory pressure level required for carbon dioxide homeostasis in an animal model of infant laparoscopy. Acta Anaesthesiol Scand 2020; 64:1114-1119. [PMID: 32386340 DOI: 10.1111/aas.13617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Capnoperitoneum provides a ventilatory challenge due to reduction in end-expiratory lung volume and peritoneal carbon dioxide absorption in both children and adults. The primary aim of this controlled interventional trial was to determine the positive end-expiratory pressure (PEEP) level needed to ensure for adequate carbon dioxide clearance and preservation of carbon dioxide homeostasis in an experimental model of infant laparoscopy. The secondary aim was to evaluate potential effects on cardiac output of PEEP and abdominal pressure level variations in the same setting. METHODS Eight chinchilla bastard rabbits were anesthetized and mechanically ventilated. Intra-abdominal pressures were randomly set to 0, 6, and 12 mm Hg by carbon dioxide insufflation. Carbon dioxide clearance using volumetric capnography, arterial blood gas data, and cardiac output was recorded, while PEEP 3, 6, and 9 cmH2 O were applied in a random order. RESULTS A PEEP of 9 cmH2 O showed restoration of carbon dioxide clearance without causing changes in arterial partial pressure of carbon dioxide and bicarbonate and with no associated deterioration in cardiac output. CONCLUSION The results promote a PEEP level of 9 cmH2 O in this model of infant capnoperitoneum to allow for adequate carbon dioxide removal with subsequent preservation of carbon dioxide homeostasis. The use of high PEEP was not associated with any decrease in cardiac output.
Collapse
Affiliation(s)
- Jacob Karlsson
- Anestesi‐ochIntensivvårdsavdelningen Department of Physiology and Pharmacology (FYFA) C3, Eiksson I Lars Group – Section of Anesthesiology and Intensive Care Karolinska Institute Stockholm Sweden
- Pediatric Perioperative Medicine and Intensive Care Karolinska University Hospital Eugenivägen 23 Stockholm Sweden
| | - Gergely H. Fodor
- Unit for Anaesthesiological Investigations Department of Anesthesiology Pharmacology Intensive Care and Emergency Medicine University of Geneva Geneva Switzerland
| | - Andre dos Santos Rocha
- Unit for Anaesthesiological Investigations Department of Anesthesiology Pharmacology Intensive Care and Emergency Medicine University of Geneva Geneva Switzerland
| | - Na Lin
- Unit for Anaesthesiological Investigations Department of Anesthesiology Pharmacology Intensive Care and Emergency Medicine University of Geneva Geneva Switzerland
| | - Walid Habre
- Unit for Anaesthesiological Investigations Department of Anesthesiology Pharmacology Intensive Care and Emergency Medicine University of Geneva Geneva Switzerland
- Pediatric Anesthesia Unit Geneva Children’s Hospital Geneva Switzerland
| | - Mats Wallin
- Anestesi‐ochIntensivvårdsavdelningen Department of Physiology and Pharmacology (FYFA) C3, Eiksson I Lars Group – Section of Anesthesiology and Intensive Care Karolinska Institute Stockholm Sweden
- Maquet Critical Care AB Solna Sweden
| | | | - Ferenc Peták
- Departmenet of Medical Physics and Informatics University of Szeged Szeged Hungary
| | - Per‐Arne Lönnqvist
- Anestesi‐ochIntensivvårdsavdelningen Department of Physiology and Pharmacology (FYFA) C3, Eiksson I Lars Group – Section of Anesthesiology and Intensive Care Karolinska Institute Stockholm Sweden
- Pediatric Perioperative Medicine and Intensive Care Karolinska University Hospital Eugenivägen 23 Stockholm Sweden
| |
Collapse
|
5
|
Motta-Ribeiro GC, Vidal Melo MF, Jandre FC. A simplified 4-parameter model of volumetric capnograms improves calculations of airway dead space and slope of Phase III. J Clin Monit Comput 2019; 34:1265-1274. [PMID: 31872310 DOI: 10.1007/s10877-019-00451-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/15/2019] [Indexed: 11/24/2022]
Abstract
To evaluate a compact and easily interpretable 4-parameter model describing the shape of the volumetric capnogram, and the resulting estimates of anatomical dead space (VDAW) and Phase III (alveolar plateau) slope (SIII). Data from of 8 mildly-endotoxemic pre-acute respiratory distress syndrome sheep were fitted to the proposed 4-parameter model (4p) and a previously established 7-parameter model (7p). Root mean square error (RMSE) and Akaike information criterion (AIC), as well as VDAW and SIII derived from each model were compared. Confidence intervals for model's parameters, VDAW and SIII were estimated with a jackknife approach. RMSE values were similar (4p: 1.13 ± 0.01 mmHg vs 7p: 1.14 ± 0.01 mmHg) in the 791 breath cycles tested. However, the 7p overfitted the curve and had worse AIC in more than 50% of the cycles (p < 0.001). The large number of degrees of freedom also resulted in larger between-animal range of confidence intervals for 7p (VDAW: from 6.1 10-12 to 34 ml, SIII: from 9.53 10-7 to 1.80 mmHg/ml) as compared to 4p (VDAW: from 0.019 to 0.15 ml, SIII: from 3.9 10-4 to 0.011 mmHg/ml). Mean differences between VDAW (2.1 ± 0.04 ml) and SIII (0.047 ± 0.004 mmHg/ml) from 7 and 4p were significant (p < 0.001), but within the observed cycle-by-cycle variability. The proposed 4-parameter model of the volumetric capnogram improves data fitting and estimation of VDAW and SIII as compared to the 7-parameter model of reference. These advantages support the use of the 4-parameter model in future research and clinical applications.
Collapse
Affiliation(s)
- Gabriel C Motta-Ribeiro
- Biomedical Engineering Programme, COPPE, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos F Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Frederico C Jandre
- Biomedical Engineering Programme, COPPE, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Hochwald O, Borenstein-Levin L, Dinur G, Jubran H, Ben-David S, Kugelman A. Continuous Noninvasive Carbon Dioxide Monitoring in Neonates: From Theory to Standard of Care. Pediatrics 2019; 144:peds.2018-3640. [PMID: 31248940 DOI: 10.1542/peds.2018-3640] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2019] [Indexed: 11/24/2022] Open
Abstract
Ventilatory support may affect the short- and long-term neurologic and respiratory morbidities of preterm infants. Ongoing monitoring of oxygenation and ventilation and control of adequate levels of oxygen, pressures, and volumes can decrease the incidence of such adverse outcomes. Use of pulse oximetry became a standard of care for titrating oxygen delivery, but continuous noninvasive monitoring of carbon dioxide (CO2) is not routinely used in NICUs. Continuous monitoring of CO2 level may be crucial because hypocarbia and hypercarbia in extremely preterm infants are associated with lung and brain morbidities, specifically bronchopulmonary dysplasia, intraventricular hemorrhage, and cystic periventricular leukomalacia. It is shown that continuous monitoring of CO2 levels helps in maintaining stable CO2 values within an accepted target range. Continuous monitoring of CO2 levels can be used in the delivery room, during transport, and in infants receiving invasive or noninvasive respiratory support in the NICU. It is logical to hypothesize that this will result in better outcome for extremely preterm infants. In this article, we review the different noninvasive CO2 monitoring alternatives and devices, their advantages and disadvantages, and the available clinical data supporting or negating their use as a standard of care in NICUs.
Collapse
Affiliation(s)
- Ori Hochwald
- Department of Neonatology, Rambam Health Care Campus, Haifa, Israel; and .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liron Borenstein-Levin
- Department of Neonatology, Rambam Health Care Campus, Haifa, Israel; and.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil Dinur
- Department of Neonatology, Rambam Health Care Campus, Haifa, Israel; and.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Huda Jubran
- Department of Neonatology, Rambam Health Care Campus, Haifa, Israel; and.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shlomit Ben-David
- Department of Neonatology, Rambam Health Care Campus, Haifa, Israel; and.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amir Kugelman
- Department of Neonatology, Rambam Health Care Campus, Haifa, Israel; and.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Dos Santos Rocha A, Südy R, Fodor GH, Habre W, Peták F. Feasibility of forced oscillatory assessment of respiratory mechanics across a laryngeal mask airway in rabbits. Physiol Meas 2019; 40:065001. [PMID: 31051489 DOI: 10.1088/1361-6579/ab1f13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The forced oscillation technique (FOT) is the method of choice for assessment of respiratory tissue mechanics. A laryngeal mask airway (LMA) is increasingly used to secure the airways in subjects under sedation or general anesthesia. While FOT is routinely performed using an endotracheal tube (ETT), the accuracy of information about airway and tissue mechanics obtained with FOT using a LMA has not been characterized. Therefore, we compared the mechanical parameters obtained with FOT using LMA and ETT in rabbits. APPROACH FOT was performed through a LMA at normal and reduced oscillatory amplitudes in anesthetized and mechanically ventilated rabbits (n = 9) at positive end-expiratory pressures (PEEP) of 3 and 6 cmH2O. These measurements were repeated at normal amplitude for the same animal using an ETT. Airway resistance, inertance, respiratory tissue damping (G) and elastance (H) were measured under each condition by FOT. The potential bias of the distensible upper airways when FOT was applied using LMA was assessed with a simulation study. MAIN RESULTS Values of parameters reflecting airway mechanics were significantly higher when measured using LMA at both PEEPs and oscillatory amplitudes than with ETT. Conversely, regardless of the condition, there was a correlation (r = 0.89 both at normal and reduced amplitudes; p < 0.0001) with good agreement (mean bias of 8.8 cmH2O/l and 11.3 cmH2O/l) in H, whereas G was systematically lower when obtained with LMA than with ETT at PEEP 3 (21.1% ± 7.2% and 9.6% ± 6.9% at normal and reduced oscillatory amplitudes, respectively) and 6 cmH2O (15.1% ± 8.2%, 1.6% ± 9.4%, p < 0.05 for all). SIGNIFICANCE Mechanical properties of the airways and the respiratory tissues, particularly for respiratory tissue stiffness, can be reliably assessed using LMA. However, the involvement of a longer laryngo-tracheo-bronchial pathway when using LMA should be considered for airway resistance and inertance, whereas upper airway shunting may affect the assessment of respiratory tissue damping.
Collapse
Affiliation(s)
- Andre Dos Santos Rocha
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University of Geneva, Geneva,Switzerland
| | | | | | | | | |
Collapse
|