1
|
Gou Y, Xie X, Yin H, Wu Y, Wen Y, Zhang Y. Association between inflammation-related indicators and vertebral fracture in older adults in the United States: A cross-sectional study based on National Health and Nutrition Examination Survey 2013-2014. Immun Inflamm Dis 2024; 12:e70047. [PMID: 39508685 PMCID: PMC11542303 DOI: 10.1002/iid3.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE This study was to examine the association between inflammation-related indexes SII (systemic immune-inflammation index), NLR (neutrophil-to-lymphocyte ratio), PPN (product of platelet count and neutrophil count), and PLR (platelet-to-lymphocyte ratio), and the occurrence of vertebral fractures in older Americans. METHODS Patients ⩾60 years of age from the 2013-2014 NHANES database were selected for this study. Restricted cubic spline models and weighted logistic regression models were used to assess the association between inflammation-related indexes and the occurrence of vertebral fractures in older Americans. The predictive value of the inflammation-related indexes on the occurrence of vertebral fractures was assessed using receiver operating characteristic curves (ROC). To examine the robustness of the main findings, a sensitivity analysis was conducted. RESULTS A total of 1281 patients were included in the analysis, of whole 120 suffered vertebral fractures. Fully adjusted logistic regression showed a significant linear relationship between NLR and the occurrence of vertebral fracture in older Americans (p < .05), but no relationship was found between SII, PLR, and the occurrence of vertebral fracture in older Americans. Meanwhile, NLR was slightly better than other indicators in predicting vertebral fracture. CONCLUSIONS This study found that NLR, as a novel inflammatory marker, can predict the risk of vertebral fracture in older Americans, which is of clinical significance for the prevention and treatment of vertebral fracture in older adults.
Collapse
Affiliation(s)
- Yuwei Gou
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Xiansong Xie
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Heng Yin
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yucheng Wu
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yongjie Wen
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yingbo Zhang
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| |
Collapse
|
2
|
Caloric restriction causes a distinct reorganization of the lipidome in quiescent and non-quiescent cells of budding yeast. Oncotarget 2021; 12:2351-2374. [PMID: 34853658 PMCID: PMC8629408 DOI: 10.18632/oncotarget.28133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
After budding yeast cells cultured in a nutrient-rich liquid medium with 0.2% glucose (under caloric restriction conditions) or 2% glucose (under non-caloric restriction conditions), ferment glucose to ethanol and then consume ethanol, they enter the stationary phase. The process of their chronological aging begins. At that point, the yeast culture starts to accumulate quiescent and non-quiescent cells. Here, we purified the high- and low-density populations of quiescent and non-quiescent cells from the yeast cultures limited in calorie supply or not. We then employed mass spectrometry-based quantitative lipidomics to assess the aging-associated changes in high- and low-density cells’ lipidomes. We found that caloric restriction, a geroprotective dietary intervention, alters the concentrations of many lipid classes through most of the chronological lifespan of the high- and low-density populations of quiescent and non-quiescent cells. Specifically, caloric restriction decreased triacylglycerol, increased free fatty acid, elevated phospholipid and amplified cardiolipin concentrations. Based on these findings, we propose a hypothetical model for a caloric restriction-dependent reorganization of lipid metabolism in budding yeast’s quiescent and non-quiescent cells. We also discovered that caloric restriction creates lipidomic patterns of these cells that differ from those established by two other robust geroprotectors, namely the tor1Δ mutation and lithocholic acid.
Collapse
|
3
|
Hofmann M, Loubéry S, Fitzpatrick TB. On the nature of thiamine triphosphate in Arabidopsis. PLANT DIRECT 2020; 4:e00258. [PMID: 32885135 PMCID: PMC7456500 DOI: 10.1002/pld3.258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 05/02/2023]
Abstract
Vitamin B1 is a family of molecules, the most renowned member of which is diphosphorylated thiamine (TDP)-a coenzyme vital for the activity of key enzymes of energy metabolism. Triphosphorylated thiamine derivatives also exist within this family, specifically thiamine triphosphate (TTP) and adenosine thiamine triphosphate (ATTP). They have been investigated primarily in mammalian cells and are thought to act as metabolic messengers but have not received much attention in plants. In this study, we set out to examine for the presence of these triphosphorylated thiamine derivatives in Arabidopsis. We could find TTP in Arabidopsis under standard growth conditions, but we could not detect ATTP. Interestingly, TTP is found primarily in shoot tissue. Drivers of TTP synthesis are light intensity, the proton motive force, as well as TDP content. In plants, TTP accumulates in the organellar powerhouses, the plastids, and mitochondria. Furthermore, in contrast to other B1 vitamers, there are strong oscillations in tissue levels of TTP levels over diel periods peaking early during the light period. The elevation of TTP levels during the day appears to be coupled to a photosynthesis-driven process. We propose that TTP may signify TDP sufficiency, particularly in the organellar powerhouses, and discuss our findings in relation to its role.
Collapse
Affiliation(s)
- Manuel Hofmann
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | - Sylvain Loubéry
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | | |
Collapse
|
4
|
Mohammad K, Baratang Junio JA, Tafakori T, Orfanos E, Titorenko VI. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast. Int J Mol Sci 2020; 21:ijms21134717. [PMID: 32630624 PMCID: PMC7369985 DOI: 10.3390/ijms21134717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022] Open
Abstract
After Saccharomyces cerevisiae cells cultured in a medium with glucose consume glucose, the sub-populations of quiescent and non-quiescent cells develop in the budding yeast culture. An age-related chronology of quiescent and non-quiescent yeast cells within this culture is discussed here. We also describe various hallmarks of quiescent and non-quiescent yeast cells. A complex aging-associated program underlies cellular quiescence in budding yeast. This quiescence program includes a cascade of consecutive cellular events orchestrated by an intricate signaling network. We examine here how caloric restriction, a low-calorie diet that extends lifespan and healthspan in yeast and other eukaryotes, influences the cellular quiescence program in S. cerevisiae. One of the main objectives of this review is to stimulate an exploration of the mechanisms that link cellular quiescence to chronological aging of budding yeast. Yeast chronological aging is defined by the length of time during which a yeast cell remains viable after its growth and division are arrested, and it becomes quiescent. We propose a hypothesis on how caloric restriction can slow chronological aging of S. cerevisiae by altering the chronology and properties of quiescent cells. Our hypothesis posits that caloric restriction delays yeast chronological aging by targeting four different processes within quiescent cells.
Collapse
|
5
|
Nunn AVW, Guy GW, Botchway SW, Bell JD. From sunscreens to medicines: Can a dissipation hypothesis explain the beneficial aspects of many plant compounds? Phytother Res 2020; 34:1868-1888. [PMID: 32166791 PMCID: PMC7496984 DOI: 10.1002/ptr.6654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Abstract
Medicine has utilised plant‐based treatments for millennia, but precisely how they work is unclear. One approach is to use a thermodynamic viewpoint that life arose by dissipating geothermal and/or solar potential. Hence, the ability to dissipate energy to maintain homeostasis is a fundamental principle in all life, which can be viewed as an accretion system where layers of complexity have built upon core abiotic molecules. Many of these compounds are chromophoric and are now involved in multiple pathways. Plants have further evolved a plethora of chromophoric compounds that can not only act as sunscreens and redox modifiers, but also have now become integrated into a generalised stress adaptive system. This could be an extension of the dissipative process. In animals, many of these compounds are hormetic, modulating mitochondria and calcium signalling. They can also display anti‐pathogen effects. They could therefore modulate bioenergetics across all life due to the conserved electron transport chain and proton gradient. In this review paper, we focus on well‐described medicinal compounds, such as salicylic acid and cannabidiol and suggest, at least in animals, their activity reflects their evolved function in plants in relation to stress adaptation, which itself evolved to maintain dissipative homeostasis.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | | | - Stanley W Botchway
- STFC, UKRI & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
6
|
Rand DM, Mossman JA. Mitonuclear conflict and cooperation govern the integration of genotypes, phenotypes and environments. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190188. [PMID: 31787039 PMCID: PMC6939372 DOI: 10.1098/rstb.2019.0188] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mitonuclear genome is the most successful co-evolved mutualism in the history of life on Earth. The cross-talk between the mitochondrial and nuclear genomes has been shaped by conflict and cooperation for more than 1.5 billion years, yet this system has adapted to countless genomic reorganizations by each partner, and done so under changing environments that have placed dramatic biochemical and physiological pressures on evolving lineages. From putative anaerobic origins, mitochondria emerged as the defining aerobic organelle. During this transition, the two genomes resolved rules for sex determination and transmission that made uniparental inheritance the dominant, but not a universal pattern. Mitochondria are much more than energy-producing organelles and play crucial roles in nutrient and stress signalling that can alter how nuclear genes are expressed as phenotypes. All of these interactions are examples of genotype-by-environment (GxE) interactions, gene-by-gene (GxG) interactions (epistasis) or more generally context-dependent effects on the link between genotype and phenotype. We provide evidence from our own studies in Drosophila, and from those of other systems, that mitonuclear interactions—either conflicting or cooperative—are common features of GxE and GxG. We argue that mitonuclear interactions are an important model for how to better understand the pervasive context-dependent effects underlying the architecture of complex phenotypes. Future research in this area should focus on the quantitative genetic concept of effect size to place mitochondrial links to phenotype in a proper context. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI, USA
| | - Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI, USA
| |
Collapse
|
7
|
Mitophagy, Mitochondrial Dynamics, and Homeostasis in Cardiovascular Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9825061. [PMID: 31781358 PMCID: PMC6875274 DOI: 10.1155/2019/9825061] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Biological aging is an inevitable and independent risk factor for a wide array of chronic diseases including cardiovascular and metabolic diseases. Ample evidence has established a pivotal role for interrupted mitochondrial homeostasis in the onset and development of aging-related cardiovascular anomalies. A number of culprit factors have been suggested in aging-associated mitochondrial anomalies including oxidative stress, lipid toxicity, telomere shortening, metabolic disturbance, and DNA damage, with recent findings revealing a likely role for compromised mitochondrial dynamics and mitochondrial quality control machinery such as autophagy. Mitochondria undergo consistent fusion and fission, which are crucial for mitochondrial homeostasis and energy adaptation. Autophagy, in particular, mitochondria-selective autophagy, namely, mitophagy, refers to a highly conservative cellular process to degrade and clear long-lived or damaged cellular organelles including mitochondria, the function of which gradually deteriorates with increased age. Mitochondrial homeostasis could be achieved through a cascade of independent but closely related processes including fusion, fission, mitophagy, and mitochondrial biogenesis. With improved health care and increased human longevity, the ever-rising aging society has imposed a high cardiovascular disease prevalence. It is thus imperative to understand the role of mitochondrial homeostasis in the regulation of lifespan and healthspan. Targeting mitochondrial homeostasis should offer promising novel therapeutic strategies against aging-related complications, particularly cardiovascular diseases.
Collapse
|
8
|
Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget 2019; 10:5780-5816. [PMID: 31645900 PMCID: PMC6791382 DOI: 10.18632/oncotarget.27209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Paola Escudero
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sahar Soodbakhsh
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hana Maalaoui
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|