1
|
Valls MD, Soldado M, Arasa J, Perez-Aso M, Williams AJ, Cronstein BN, Noguera MA, Terencio MC, Montesinos MC. Annexin A2-Mediated Plasminogen Activation in Endothelial Cells Contributes to the Proangiogenic Effect of Adenosine A 2A Receptors. Front Pharmacol 2021; 12:654104. [PMID: 33986681 PMCID: PMC8111221 DOI: 10.3389/fphar.2021.654104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Adenosine A2A receptor mediates the promotion of wound healing and revascularization of injured tissue, in healthy and animals with impaired wound healing, through a mechanism depending upon tissue plasminogen activator (tPA), a component of the fibrinolytic system. In order to evaluate the contribution of plasmin generation in the proangiogenic effect of adenosine A2A receptor activation, we determined the expression and secretion of t-PA, urokinase plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1) and annexin A2 by human dermal microvascular endothelial cells stimulated by the selective agonist CGS-21680. The plasmin generation was assayed through an enzymatic assay and the proangiogenic effect was studied using an endothelial tube formation assay in Matrigel. Adenosine A2A receptor activation in endothelial cells diminished the release of PAI-1 and promoted the production of annexin A2, which acts as a cell membrane co-receptor for plasminogen and its activator tPA. Annexin A2 mediated the increased cell membrane-associated plasmin generation in adenosine A2A receptor agonist treated human dermal microvascular endothelial cells and is required for tube formation in an in vitro model of angiogenesis. These results suggest a novel mechanism by which adenosine A2A receptor activation promotes angiogenesis: increased endothelial expression of annexin A2, which, in turn, promotes fibrinolysis by binding tPA and plasminogen to the cell surface.
Collapse
Affiliation(s)
- María D Valls
- Departament of Pharmacology, Faculty of Pharmacy, Universitat de València, Valencia, Spain
| | - María Soldado
- Departament of Pharmacology, Faculty of Pharmacy, Universitat de València, Valencia, Spain
| | - Jorge Arasa
- Departament of Pharmacology, Faculty of Pharmacy, Universitat de València, Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Miguel Perez-Aso
- Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, United States
| | - Adrienne J Williams
- Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, United States
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, United States.,Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, United States.,Medical Science Building, NYU Langone Health, New York, NY, United States
| | - M Antonia Noguera
- Departament of Pharmacology, Faculty of Pharmacy, Universitat de València, Valencia, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED) Universitat de València, Valencia, Spain
| | - M Carmen Terencio
- Departament of Pharmacology, Faculty of Pharmacy, Universitat de València, Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - M Carmen Montesinos
- Departament of Pharmacology, Faculty of Pharmacy, Universitat de València, Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| |
Collapse
|
2
|
Tkachuk VA, Parfyonova YV, Plekhanova OS, Stepanova VV, Menshikov MY, Semina EV, Bibilashvili RS, Chazov EI. [Fibrinolytics: from the thrombolysis to the processes of blood vessels growth and remodeling, neurogenesis, carcinogenesis and fibrosis]. TERAPEVT ARKH 2019; 91:4-9. [PMID: 32598807 DOI: 10.26442/00403660.2019.09.000411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
One of the most outstanding scientific achievements in the thrombolysis is the development and administration of fibrinolysin - the first Soviet drug that lyses blood clots. Intracoronary administration of fibrinolysin reduced the mortality of patients with myocardial infarction by almost 20%. For his work in this field Yevgeny Chazov was awarded the Lenin Prize in 1982. Over the next decades, under his leadership, the Cardiology Center established scientific and clinical laboratories that created new generations of drugs based on fibrinolytics for treating patients with myocardial infarction, restoration of blood flow in ischemic tissue, and also studying the mechanisms of remodeling of blood vessels involving the fibrinolysis system. It have been found new mechanisms of regulation of the navigation of blood vessels and nerves growth, tumor growth and its metastasis with the participation of the fibrinolysis system proteins. The review reports the role of the fibrinolysis system in the thrombolysis, blood vessels growth and remodeling, neurogenesis, carcinogenesis and fibrosis. The article is dedicated to the 90th anniversary of academician E.I. Chazov.
Collapse
Affiliation(s)
- V A Tkachuk
- National Medical Research Center of Cardiology
| | | | | | | | | | - E V Semina
- National Medical Research Center of Cardiology
| | | | - E I Chazov
- National Medical Research Center of Cardiology
| |
Collapse
|