1
|
Niu D, Xu L, Lin K. Multitrophic and Multilevel Interactions Mediated by Volatile Organic Compounds. INSECTS 2024; 15:572. [PMID: 39194777 DOI: 10.3390/insects15080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Plants communicate with insects and other organisms through the release of volatile organic compounds (VOCs). Using Boolean operators, we retrieved 1093 articles from the Web of Science and Scopus databases, selecting 406 for detailed analysis, with approximately 50% focusing on herbivore-induced plant volatiles (HIPVs). This review examines the roles of VOCs in direct and indirect plant defense mechanisms and their influence on complex communication networks within ecosystems. Our research reveals significant functions of VOCs in four principal areas: activating insect antennae, attracting adult insects, attracting female insects, and attracting natural enemies. Terpenoids like α-pinene and β-myrcene significantly alter pest behavior by attracting natural enemies. β-ocimene and β-caryophyllene are crucial in regulating aboveground and belowground interactions. We emphasize the potential applications of VOCs in agriculture for developing novel pest control strategies and enhancing crop resilience. Additionally, we identify research gaps and propose new directions, stressing the importance of comparative studies across ecosystems and long-term observational research to better understand VOCs dynamics. In conclusion, we provide insights into the multifunctionality of VOCs in natural ecosystems, their potential for future research and applications, and their role in advancing sustainable agricultural and ecological practices, contributing to a deeper understanding of their mechanisms and ecological functions.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| |
Collapse
|
2
|
Kuhn A, San Martin G, Hasbroucq S, Beliën T, Bonte J, Bouget C, Hautier L, Sweeney J, Grégoire JC. Enhancing Buprestidae monitoring in Europe: Trap catches increase with a fluorescent yellow colour but not with the presence of decoys. PLoS One 2024; 19:e0307397. [PMID: 39024207 PMCID: PMC11257278 DOI: 10.1371/journal.pone.0307397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
This study investigated the efficacy of various traps differing in colour (green or yellow), presence or absence of decoys (dead Agrilus planipennis) or design (commercial MULTz or multifunnel traps, and homemade bottle- or fan-traps) for monitoring European Buprestidae in deciduous forests and pear orchards. Over two years, we collected 2220 samples on a two-week basis from 382 traps across 46 sites in Belgium and France. None of the traps proved effective for monitoring Agrilus sinuatus in infested pear orchards (17 specimens captured in 2021, 0 in 2022). The decoys did not affect the catch rates whatever the trap model, colour, buprestid species or sex. The fluorescent yellow traps (MULTz and yellow fan-traps) tended to be more attractive than the green traps (green fan-traps and, to a lower extent, multifunnel green traps). Most Agrilus species showed similar patterns in mean trap catches, with the exception of Agrilus biguttatus, which had the largest catches in the green multifunnel traps. Finally, we observed a high variation in catch rates between localities: the site explained 64% of the catches variance, while the tree within the site and the type of trap explained only 6-8.5% each. In many sites, we captured very few specimens, despite the abundance of dying mature trees favourable to the development of Buprestidae. For the early detection of non-native Buprestidae, it therefore seems essential to maximise the number of monitoring sites. Due to their cost-effectiveness, lightweight design, and modularity, fan-traps emerged as promising tools for buprestid monitoring. The study's findings extend beyond European fauna, as a preliminary trial in Canada suggested that yellow fan-traps could also improve captures of non-European buprestid species and catch species of interest such as Agrilus bilineatus (a species on the EPPO A2 list of pests/pathogens recommended for regulation in the EU).
Collapse
Affiliation(s)
- Alexandre Kuhn
- Life Sciences Department, Crops and Forest Health Unit, Walloon Agricultural Research Centre, Gembloux, Belgium
| | - Gilles San Martin
- Life Sciences Department, Crops and Forest Health Unit, Walloon Agricultural Research Centre, Gembloux, Belgium
| | - Séverine Hasbroucq
- Spatial Ecology Laboratory (SpELL), CP 160/12, Université Libre de Bruxelles, Brussels, Belgium
| | - Tim Beliën
- Zoology Department, Research Centre for Fruit Cultivation (pcfruit npo), Sint-Truiden, Belgium
| | - Jochem Bonte
- Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Merelbeke, Belgium
| | | | - Louis Hautier
- Life Sciences Department, Crops and Forest Health Unit, Walloon Agricultural Research Centre, Gembloux, Belgium
| | - Jon Sweeney
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - Jean-Claude Grégoire
- Spatial Ecology Laboratory (SpELL), CP 160/12, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Fuentes-Lopez K, Ahumedo-Monterrosa M, Olivero-Verbel J, Caballero-Gallardo K. Essential oil components interacting with insect odorant-binding proteins: a molecular modelling approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:591-610. [PMID: 39101323 DOI: 10.1080/1062936x.2024.2382973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Essential oils (EOs) are natural products currently used to control arthropods, and their interaction with insect odorant-binding proteins (OBPs) is fundamental for the discovery of new repellents. This in silico study aimed to predict the potential of EO components to interact with odorant proteins. A total of 684 EO components from PubChem were docked against 23 odorant binding proteins from Protein Data Bank using AutoDock Vina. The ligands and proteins were optimized using Gaussian 09 and Sybyl-X 2.0, respectively. The nature of the protein-ligand interactions was characterized using LigandScout 4.0, and visualization of the binding mode in selected complexes was carried out by Pymol. Additionally, complexes with the best binding energy in molecular docking were subjected to 500 ns molecular dynamics simulations using Gromacs. The best binding affinity values were obtained for the 1DQE-ferutidine (-11 kcal/mol) and 2WCH-kaurene (-11.2 kcal/mol) complexes. Both are natural ligands that dock onto those proteins at the same binding site as DEET, a well-known insect repellent. This study identifies kaurene and ferutidine as possible candidates for natural insect repellents, offering a potential alternative to synthetic chemicals like DEET.
Collapse
Affiliation(s)
- K Fuentes-Lopez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - M Ahumedo-Monterrosa
- Natural Products Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - J Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - K Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
4
|
Wu Y, Li Y, Chu W, Niu T, Feng X, Ma R, Liu H. Expression and functional characterization of odorant-binding protein 2 in the predatory mite Neoseiulus barkeri. INSECT SCIENCE 2023; 30:1493-1506. [PMID: 36458978 DOI: 10.1111/1744-7917.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays a crucial role for arthropods in foraging, mating, and oviposition. The odorant-binding protein (OBP) gene is considered one of the most important olfactory genes. However, little is known about its functions in predatory mites. Here, we used Neoseiulus barkeri, an important commercialized natural pest control, to explore the chemosensory characteristics of OBP. In this study, N. barkeri was attracted by methyl salicylate (MeSA) and showed higher crawling speeds under MeSA treatment. Then, we identified and cloned an OBP gene named Nbarobp2 and analyzed its expression profiles in the predatory mite. Nbarobp2 was 663 bp, was highly expressed in larval and nymphal stages, and was significantly upregulated in N. barkeri under MeSA treatment. Nbarobp2 encoded 202 amino acid residues with a molecular weight of 23 kDa (after removing the signal peptide). Sequence comparisons revealed that the OBPs in Arachnida shared 6 conserved cysteine sites, but were distinguishable from the OBPs of Insecta on the phylogenetic tree. RNA interference, Western blotting, and binding affinity assays further proved that Nbarobp2 was involved in volatile perception in predatory mites. This study shed light on the functional characteristics of OBPs in predatory mites, providing a new insight for better biological control.
Collapse
Affiliation(s)
- Yixia Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Yaying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Wenqiang Chu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Tiandi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Xiaotian Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Rongjiang Ma
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| |
Collapse
|
5
|
Qi X, Li H, Liu X, Wang B, Meng J, Liu Q, Sun W, Pan B. Location of olfactory organs and architecture of gustatory organs in the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae). ZOOL ANZ 2023. [DOI: 10.1016/j.jcz.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Yin NN, Yang AJ, Wu C, Xiao HY, Guo YR, Liu NY. Genome-Wide Analysis of Odorant-Binding Proteins in Papilio xuthus with Focus on the Perception of Two PxutGOBPs to Host Odorants and Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10747-10761. [PMID: 36002911 DOI: 10.1021/acs.jafc.2c03396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we annotated 49 odorant-binding proteins (OBPs) in Papilio xuthus, with four novel genes and seven improved sequences. Expression profiles identified numerous OBPs in antennae or reproductive tissues. Using two antenna-enriched general OBPs (PxutGOBP1 and PxutGOBP2) as targets, we screened three key compounds by a reverse chemical ecology strategy. Of these, an oviposition stimulant vicenin-2 could strongly interact with PxutGOBP1, representing a dissociation constant (Ki) value of 10.34 ± 0.07 μM. Molecular simulations and site-directed mutagenesis revealed the importance of His66, Thr73, and Phe118 between PxutGOBP1 and vicenin-2 interactions. Two other compounds, an ordinary floral scent β-ionone and a widely used insecticide chlorpyrifos, exhibited high affinities to PxutGOBPs (Ki < 13 μM). Furthermore, two mutations His66Ala and Thr73Ala of PxutGOBP1 significantly reduced the binding to chlorpyrifos. Our study provides insights into the putative roles of PxutGOBPs in odorant perception and identifies key binding sites of PxutGOBP1 to vicenin-2 and chlorpyrifos.
Collapse
Affiliation(s)
- Ning-Na Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - An-Jin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Chun Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Hai-Yan Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu-Ruo Guo
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
7
|
Tanaka K, Shimomura K, Hosoi A, Sato Y, Oikawa Y, Seino Y, Kuribara T, Yajima S, Tomizawa M. Antennal transcriptome analysis of chemosensory genes in the cowpea beetle, Callosobruchus maculatus (F.). PLoS One 2022; 17:e0262817. [PMID: 35045135 PMCID: PMC8769365 DOI: 10.1371/journal.pone.0262817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Olfaction, one of the most important sensory systems governing insect behavior, is a possible target for pest management. Therefore, in this study, we analyzed the antennal transcriptome of the cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae), which is a major pest of stored pulses and legumes. The de novo antennal RNA-seq assembly results identified 17 odorant, 2 gustatory, and 10 ionotropic receptors, 1 sensory neuron membrane protein, and 12 odorant-binding and 7 chemosensory proteins. Moreover, differential gene expression analysis of virgin male and female antennal samples followed by qRT-PCR revealed 1 upregulated and 4 downregulated odorant receptors in males. We also performed homology searches using the coding sequences built from previously proposed amino acid sequences derived from genomic data and identified additional chemosensory-related genes.
Collapse
Affiliation(s)
- Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Kenji Shimomura
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Akito Hosoi
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yui Sato
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yukari Oikawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yuma Seino
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Takuto Kuribara
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Motohiro Tomizawa
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
8
|
Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome. INSECTS 2022; 13:insects13010096. [PMID: 35055940 PMCID: PMC8781584 DOI: 10.3390/insects13010096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
Abstract
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level.
Collapse
|
9
|
Wu Y, Wu M, Hui Z, Hu X, Xu X. Polyphenism in Antennal Sensilla Among Different Adult Morphs of Nonhost-Alternating, Holocyclic Sitobion avenae (Hemiptera: Aphididae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6495619. [PMID: 34982166 PMCID: PMC8725641 DOI: 10.1093/jisesa/ieab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 05/31/2023]
Abstract
Aphids, mainly distributed in temperate zones, exhibit seasonal generation-alternating phenomena. Across the life cycle, different morphs are produced. Sitobion avenae (Fabricius 1775) is a major pest of wheat worldwide. To elucidate olfactory perception of morph-specific behavior across their life cycle, we investigated antennal sensilla among seven morphs using scanning electron microscopy. Trichoid, placoid, coeloconic, and campaniform sensilla were identified. Trichoid sensilla, big multiporous placoid sensilla (primary rhinarium), a group of sensilla (primary rhinaria), and campaniform sensilla showed similar distribution and resemblance among morphs, whereas small multiporous placoid sensilla (secondary rhinaria) exhibited obvious differences. Compared to apterous morphs, alate morphs possessed a greater abundance of secondary rhinaria, with the greatest found in males on antennal segments III-V. Alate virginoparae and alate sexuparae ranged from six to fourteen rhinaria on antennal segment III. Fundatrices, apterous virginoparae and apterous sexuparae only had one or two secondary rhinaria on antennal segment III while they disappeared in oviparae. Secondary rhinaria, lying in a cuticle cavity, are convex or concave in their central part. In males, both forms were present, with a greater proportion of convex form than that of the concave form. Fundatrices and virginoparae had the convex form while sexuparae had the concave form. Polyphenism of secondary rhinaria might suggest their association with the olfactory functions of morph-specific behavior. These results have improved our understanding of the adaptive evolution of the antennal sensilla in nonhost-alternating, holocyclic aphids.
Collapse
Affiliation(s)
- Yuting Wu
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Mengchu Wu
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Zi Hui
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Xiangshun Hu
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Xiangli Xu
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Olean (1,7-dioxaspiro[5.5]undecane): A Novel Intraspecific Chemical Cue in Coraebus undatus (F.) (Coleoptera: Buprestidae). INSECTS 2021; 12:insects12121085. [PMID: 34940173 PMCID: PMC8707708 DOI: 10.3390/insects12121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The flathead oak borer Coraebus undatus (F.) (Coleoptera: Buprestidae) is a major pest of cork oak (Quercus suber) along the Mediterranean Basin that generates significant economic losses in the cork industry. Larvae bore long galleries and feed on the cork generating layer, thus affecting its quality. At present, the semiochemistry of this species is poorly known, and therefore the elucidation of chemicals involved in its intraspecific communication may allow the development of novel control tools. We determined that both sexes release the compound 1,7-dioxaspiro[5.5]undecane, and the biological activity of the compound was addressed by means of electroantennography and behavioral assays. The attractiveness of the compound on both sexes under laboratory conditions contrasts to its performance in field trials, which may be explained by features inherent to the methodological design (e.g., the absence of a contextually related visual stimulus or trap deployment height). This is the first time in which an intraspecific compound has been reported as attractive for the species, and practical implications for the assessment of its activity under natural conditions are also further discussed. Abstract The main aim of this work was to identify semiochemicals from the jewel beetle Coraebus undatus (F.) (Coleoptera: Buprestidae) that may aid in the improvement of current monitoring tools. First, HS-SPME collections revealed that individually sampled adults (>7 days old) of both sexes release the spiroacetal 1,7-dioxaspiro[5.5]undecane (olean). Electroantennographic recordings from both sexes exposed to increasing amounts of olean followed a dose-dependent pattern, with females being more responsive than males to the highest amount of the compound (100 µg). In double-choice assays, adults older than seven days were significantly attracted to olean, whereas this attraction was not detected in insects aged less than seven days. Indeed, a repellent effect was observed in young females. Subsequent field trials employing sticky purple prism traps revealed that there were no differences among the number of insects caught in control and olean-baited traps at two different release rates (0.75 and 3.75 mg/day). Interestingly, all the trapped specimens were determined as mated females, regardless of the presence of olean. Overall, these findings provide a basis for unraveling the chemical ecology of the species, although further research is still needed to determine the specific role of this compound within the chemical communication of the species.
Collapse
|
11
|
Schmitz A, Schmitz H. Sensory equipment and adaptations to the fire habitat of the antennae of the Australian ´firebeetle´ Merimna atrata (Coleoptera; Buprestidae). ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe ‘Australian firebeetle’ Merimna atrata approaches fires in Eucalyptus forests for reproduction. Beetles stay on a postfire area as long as burning wood or hot ashes emit heat and smoke. Abdominal infrared receptors protect the beetles from landing on hot spots; however, until now fire-specific adaptations of the antennae have not been investigated in more detail. This affects the localization of olfactory sensilla used for the perception of smoke and in addition mechanisms to protect delicate sensilla against desiccation and pollution. Moreover, nothing was known about antennal thermo-/hygroreceptors in Merimna atrata. We found strong evidence for a functional grouping of the sensilla into receptors used on the ground or in flight, respectively. A first group comprises the outer visible sensilla, i.e. mechanosensory bristles, short gustatory sensilla and a small field of very short olfactory sensilla. They are used when the beetle is running around on the fireground on burnt bark or ashes. A second group of sensilla is hidden in closeable cavities on antennomeres 4–11. If the cavities are closed, the sensilla inside are fully protected. If the cavities are opened in flight, the beetles can make use of many multiporous basiconic sensilla and multiporous basiconic grooved peg sensilla for smoke detection. Minute modified sensilla coelocapitula occurring in small numbers in the cavities too, most probably serve as thermoreceptors. As a result the placing of sensilla deserving protection in closeable cavities and the reduction in number and length of the external sensilla can be interpreted as adaptations to the fire habitat.
Collapse
|
12
|
Liu G, Wang Q, Liu X, Li X, Pang X, Zhang D. Antennal and palpal sensilla of three predatory Lispe species (Diptera: Muscidae): an ultrastructural investigation. Sci Rep 2021; 11:18357. [PMID: 34526584 PMCID: PMC8443604 DOI: 10.1038/s41598-021-97677-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Antennae and maxillary palps are the most important chemical reception organs of flies. So far, the morphology of antennae and maxillary palps of flies of most feeding habits have been well described, except for that of relatively rare aquatic predatory species. This study describes sensilla on antennae and maxillary palps of three aquatic predatory Lispe species: Lispe longicollis, L. orientalis and L. pygmaea. Types, distribution, and density of sensilla are characterised via light and scanning electron microscopy. One type of mechanoreceptors is found on antennal scape. Mechanoreceptors (two subtypes) and one single pedicellar button (in L. pygmaea) are located on antennal pedicel. Four types of sensilla are discovered on antennal postpedicel: trichoid sensilla, basiconic sensilla (three subtypes), coeloconic sensilla and clavate sensilla. A unique character of these Lispe species is that the coeloconic sensilla are distributed sparsely on antennal postpedicel. Mechanoreceptors and basiconic sensilla are observed on the surface of maxillary palps in all three species. We demonstrated clear sexual dimorphism of the maxillary palps in some of the Lispe species, unlike most other Muscidae species, are larger in males than females. This, along with their courtship dance behaviour, suggest their function as both chemical signal receiver and visual signal conveyer, which is among the few records of a chemical reception organ act as a signal conveyer in insects.
Collapse
Affiliation(s)
- Genting Liu
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | - Qike Wang
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | - Xianhui Liu
- University of California Davis, Davis, CA, 95616, USA
| | - Xinyu Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road No. 35, Mailbox 162, Beijing, 100083, China
| | - Xiunan Pang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road No. 35, Mailbox 162, Beijing, 100083, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road No. 35, Mailbox 162, Beijing, 100083, China.
| |
Collapse
|
13
|
Faucheux MJ, Németh T, Hoffmannova J, Kundrata R. Scanning Electron Microscopy Reveals the Antennal Micromorphology of Lamprodila ( Palmar) festiva (Coleoptera: Buprestidae), an Invasive Pest of Ornamental Cupressaceae in Western Palaearctic. BIOLOGY 2020; 9:biology9110375. [PMID: 33158061 PMCID: PMC7694220 DOI: 10.3390/biology9110375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 01/20/2023]
Abstract
Simple Summary The jewel-beetles, Buprestidae, comprise some economically important invasive pest species. The Cypress jewel beetle, Lamprodila (Palmar) festivafestiva (Linnaeus, 1767), is a new invasive pest of ornamental Cupressaceae, which has recently expanded its range from the Mediterranean region northwards to central and eastern Europe, and to the Russian Black Sea coast. In this study, we used scanning electron microscopy to examine the morphology, numbers, distribution and possible functions of antennal sensilla in both sexes of L. festiva. In total, we identified 15 different (sub)types of sensilla, of which two are present only in females. We discuss possible functions of all examined sensilla and compare them with those in other Buprestidae or other insects. Our study should serve as background information for subsequent chemical ecology research focused mainly on the olfactory sensory system of this rapidly spreading invasive pest. Abstract The Cypress jewel beetle, Lamprodila (Palmar) festiva festiva (Linnaeus, 1767), is a serious invasive pest of ornamental Cupressaceae, which has recently expanded its range from the Mediterranean region northwards to central and eastern Europe, and to the Russian Black Sea coast. In this study, we conducted a scanning electron microscopy study of the micromorphology of the male and female antennae of L. festiva to examine the morphology, numbers, distribution, and possible functions of antennal sensilla. Most sensilla are located in the sensory fields within the apical depressions on antennomeres IV–XI. We identified four main types of antennal sensilla in L. festiva: sensilla chaetica (seven subtypes, of which two occur only in females), sensilla basiconica (five subtypes), multiporous grooved pegs (two subtypes), and Böhm sensilla. Females have relatively more sensilla chaetica and multiporous grooved pegs, whereas males have more sensilla basiconica. We discuss possible functions of all examined sensilla and compare them with those in other Buprestidae or other insects. Our study should serve as background information for advanced electrophysiological and behavioral experiments to better understand the functions of different sensilla and mechanisms related to semiochemically based pest control strategies.
Collapse
Affiliation(s)
- Michel J. Faucheux
- Laboratoire d’Endocrinologie des Insectes Sociaux, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, B.P. 92208, F-44322 Nantes CEDEX 03, France;
| | - Tamás Németh
- Department of Zoology, Hungarian Natural History Museum, Baross utca 13, H-1088 Budapest, Hungary;
| | - Johana Hoffmannova
- Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, CZ-771 46 Olomouc, Czech Republic;
| | - Robin Kundrata
- Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, CZ-771 46 Olomouc, Czech Republic;
- Correspondence:
| |
Collapse
|
14
|
Ment D, Kokiçi H, de Lillo E. Preventative Approach to Microbial Control of Capnodis tenebrionis by Soil Application of Metarhizium brunneum and Beauveria bassiana. INSECTS 2020; 11:insects11050319. [PMID: 32456112 PMCID: PMC7291278 DOI: 10.3390/insects11050319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/04/2022]
Abstract
Management of the Mediterranean flat-headed root-borer, Capnodis tenebrionis, is critical due to the larvae’s root localization. Neonate larvae can be exposed to natural enemies before penetrating the roots. Application of Metarhizium brunneum strain Mb7 and Beauveria bassiana strain GHA formulations on rice granules was investigated for their efficacy against C. tenebrionis larvae. Mb7 application, evaluated on apricot twigs, significantly and dose-dependently reduced colonization rates of neonates, with highest mortality at 108 conidia/g soil. Neonate susceptibility to Mb7 and GHA was evaluated on potted rootstocks (GF677 almond × peach, 2729 plum) planted in entomopathogenic fungi (EPF)-premixed soil (1.3–1.6 × 105 conidia/cm3 soil) or in EPF-free soil surface-treated with 5 g Mb7 fungal granules (1.25 × 109 conidia). Larval colonization rates were reduced 7.4-fold in 2729 by both fungi; only Mb7 completely prevented colonization of GF677 by larvae. Larvae inside plant galleries exhibited mycosis with EPF-treated soils and both fungi proliferated on larval frass. Mb7 conidia germinated in the rhizosphere of GF677, and conidia of both fungi remained viable throughout the trial. Galleria baiting technique was used on EPF-treated soil to evaluate EPF infectivity over time; Mb7 and GHA persisted 180 and 90 days post inoculation, respectively. The formulation (fungus-covered rice grains), delivery method (mixing with soil) and persistence (3–6 months) of Mb7 and GHA are feasible for potential field application to control C. tenebrionis.
Collapse
Affiliation(s)
- Dana Ment
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
- Correspondence:
| | - Hysen Kokiçi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (DiSSPA), Sezione di Entomologia e Zoologia University of Bari “Aldo Moro”, I-70126 Bari, Italy; (H.K.); (E.d.L.)
| | - Enrico de Lillo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (DiSSPA), Sezione di Entomologia e Zoologia University of Bari “Aldo Moro”, I-70126 Bari, Italy; (H.K.); (E.d.L.)
| |
Collapse
|