1
|
Ballasy N, Apantaku I, Dean W, Hemberger M. Off to a good start: The importance of the placental exchange surface - Lessons from the mouse. Dev Biol 2024:S0012-1606(24)00252-5. [PMID: 39491740 DOI: 10.1016/j.ydbio.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The role of the chorio-allantoic placenta as the critical nutrient- and oxygen-supplying organ to nourish the demands of the fetus has been well recognized. This function relies on the successful establishment of the placental feto-maternal exchange unit, or interhaemal barrier, across which all nutrients as well as waste products must pass to cross from the maternal to the fetal blood circulation, or vice versa, respectively. As a consequence, defects in the establishment of this elaborate interface lead to fetal growth retardation or even embryonic lethality, depending on the severity of the defect. Beyond this essential role, however, it has also emerged that the functionality of the feto-maternal interface dictates the proper development of specific embryonic organs, with tightest links observed to the formation of the heart. In this article, we build on the foundational strength of the mouse as experimental model in which the placental causality of embryonic defects can be genetically proven. We discuss in detail the formation of the interhaemal barrier that makes up the labyrinth layer of the murine placenta, including insights into drivers of its formation and the interdependence of the cell types that make up this essential interface, from in vivo and in vitro data using mouse trophoblast stem cells. We highlight mouse genetic tools that enable the elucidation of cause-effect relationships between defects driven by either the trophoblast cells of the placenta or by embryonic cell types. We specifically emphasize gene knockouts for which a placental causality of embryonic heart defects has been demonstrated. This in-depth perspective provides much-needed insights while highlighting remaining gaps in knowledge that are essential for gaining a better understanding of the multi-facetted roles of the placenta in setting us up for a healthy start in life well beyond nutritional support alone.
Collapse
Affiliation(s)
- Noura Ballasy
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Ifeoluwa Apantaku
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Dept. of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Myriam Hemberger
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
2
|
CXADR: From an Essential Structural Component to a Vital Signaling Mediator in Spermatogenesis. Int J Mol Sci 2023; 24:ijms24021288. [PMID: 36674801 PMCID: PMC9865082 DOI: 10.3390/ijms24021288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Canonical coxsackievirus and adenovirus receptor (CXADR) is a transmembrane component of cell junctions that is crucial for cardiac and testicular functions via its homophilic and heterophilic interaction. CXADR is expressed in both Sertoli cells and germ cells and is localized mainly at the interface between Sertoli-Sertoli cells and Sertoli-germ cells. Knockout of CXADR in mouse Sertoli cells specifically impairs male reproductive functions, including a compromised blood-testis barrier, apoptosis of germ cells, and premature loss of spermatids. Apart from serving as an important component for cell junctions, recent progress has showed the potential roles of CXADR as a signaling mediator in spermatogenesis. This review summarizes current research progress related to the regulation and role of CXADR in spermatogenesis as well as in pathological conditions. We hope this review provides some future directions and a blueprint to promote the further study on the roles of CXADR.
Collapse
|
3
|
Analysis of Genomic Alterations Associated with Recurrence in Early Stage HER2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14153650. [PMID: 35954313 PMCID: PMC9367395 DOI: 10.3390/cancers14153650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/25/2022] Open
Abstract
We aimed to compare gene expression in primary tumors of patients with recurrence and nonrecurrence to gain insight into the biology of high-risk HER2-positive early breast cancer. Patients who underwent curative resection and received adjuvant trastuzumab for HER2-positive early breast cancer were evaluated. Gene expression analyses were performed using NanoString Technologies’ nCounter Breast Cancer 360 Panel. PAM50 intrinsic subtypes and Breast Cancer Signatures including tumor inflammation signature (TIS) were evaluated. Of 247 patients, 28 (11.3%) had recurrence at a median follow-up of 54.2 months. Patients with pathological stage III, tumor size > 5 cm, axillary lymph node metastases, and hormone receptor-negativity were more frequently observed in the recurrent group compared with the nonrecurrent group. In patients with recurrence, seven genes were upregulated significantly, including WNT11, HAPLN1, FGF10, BBOX1, CXADR, NDP, and EREG, and two genes were downregulated, including CXCL9 and GNLY. TIS score was significantly lower in patients with recurrence compared with controls without recurrence. These findings suggest that activation of oncogenic signaling pathways related to cell proliferation, adhesion, cancer stemness, and noninflamed tumor microenvironment are associated with the risk of recurrence in early stage, HER2-positive breast cancer.
Collapse
|
4
|
Kalisch-Smith JI, Morris EC, Strevens MAA, Redpath AN, Klaourakis K, Szumska D, Outhwaite JE, Sun X, Vieira JM, Smart N, De Val S, Riley PR, Sparrow DB. Analysis of Placental Arteriovenous Formation Reveals New Insights Into Embryos With Congenital Heart Defects. Front Genet 2022; 12:806136. [PMID: 35126469 PMCID: PMC8809359 DOI: 10.3389/fgene.2021.806136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The placental vasculature provides the developing embryo with a circulation to deliver nutrients and dispose of waste products. However, in the mouse, the vascular components of the chorio-allantoic placenta have been largely unexplored due to a lack of well-validated molecular markers. This is required to study how these blood vessels form in development and how they are impacted by embryonic or maternal defects. Here, we employed marker analysis to characterize the arterial/arteriole and venous/venule endothelial cells (ECs) during normal mouse placental development. We reveal that placental ECs are potentially unique compared with their embryonic counterparts. We assessed embryonic markers of arterial ECs, venous ECs, and their capillary counterparts-arteriole and venule ECs. Major findings were that the arterial tree exclusively expressed Dll4, and venous vascular tree could be distinguished from the arterial tree by Endomucin (EMCN) expression levels. The relationship between the placenta and developing heart is particularly interesting. These two organs form at the same stages of embryogenesis and are well known to affect each other's growth trajectories. However, although there are many mouse models of heart defects, these are not routinely assessed for placental defects. Using these new placental vascular markers, we reveal that mouse embryos from one model of heart defects, caused by maternal iron deficiency, also have defects in the formation of the placental arterial, but not the venous, vascular tree. Defects to the embryonic cardiovascular system can therefore have a significant impact on blood flow delivery and expansion of the placental arterial tree.
Collapse
Affiliation(s)
- Jacinta I. Kalisch-Smith
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily C. Morris
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary A. A. Strevens
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andia N. Redpath
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kostantinos Klaourakis
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Dorota Szumska
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Ludvig Institute for Cancer Research Ltd., University of Oxford, Oxford, United Kingdom
| | | | - Xin Sun
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Joaquim Miguel Vieira
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicola Smart
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sarah De Val
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Ludvig Institute for Cancer Research Ltd., University of Oxford, Oxford, United Kingdom
| | - Paul R. Riley
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Duncan B. Sparrow
- BHF Centre for Research Excellence, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Wilkinson AL, Menelaou K, Rakoczy J, Tan XS, Watson ED. Disruption of Folate Metabolism Causes Poor Alignment and Spacing of Mouse Conceptuses for Multiple Generations. Front Cell Dev Biol 2021; 9:723978. [PMID: 34957089 PMCID: PMC8703036 DOI: 10.3389/fcell.2021.723978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Abnormal uptake or metabolism of folate increases risk of human pregnancy complications, though the mechanism is unclear. Here, we explore how defective folate metabolism influences early development by analysing mice with the hypomorphic Mtrrgt mutation. MTRR is necessary for methyl group utilisation from folate metabolism, and the Mtrrgt allele disrupts this process. We show that the spectrum of phenotypes previously observed in Mtrrgt/gt conceptuses at embryonic day (E) 10.5 is apparent from E8.5 including developmental delay, congenital malformations, and placental phenotypes. Notably, we report misalignment of some Mtrrgt conceptuses within their implantation sites from E6.5. The degree of misorientation occurs across a continuum, with the most severe form visible upon gross dissection. Additionally, some Mtrrgt/gt conceptuses display twinning. Therefore, we implicate folate metabolism in blastocyst orientation and spacing at implantation. Skewed growth likely influences embryo development since developmental delay and heart malformations (but not defects in neural tube closure or trophoblast differentiation) associate with severe misalignment of Mtrrgt/gt conceptuses. Typically, the uterus is thought to guide conceptus orientation. To investigate a uterine effect of the Mtrrgt allele, we manipulate the maternal Mtrr genotype. Misaligned conceptuses were observed in litters of Mtrr+/+, Mtrr+/gt, and Mtrrgt/gt mothers. While progesterone and/or BMP2 signalling might be disrupted, normal decidual morphology, patterning, and blood perfusion are evident at E6.5 regardless of conceptus orientation. These observations argue against a post-implantation uterine defect as a cause of conceptus misalignment. Since litters of Mtrr+/+ mothers display conceptus misalignment, a grandparental effect is explored. Multigenerational phenotype inheritance is characteristic of the Mtrrgt model, though the mechanism remains unclear. Genetic pedigree analysis reveals that severe conceptus skewing associates with the Mtrr genotype of either maternal grandparent. Moreover, the presence of conceptus skewing after embryo transfer into a control uterus indicates that misalignment is independent of the peri- and/or post-implantation uterus and instead is likely attributed to an embryonic mechanism that is epigenetically inherited. Overall, our data indicates that abnormal folate metabolism influences conceptus orientation over multiple generations with implications for subsequent development. This study casts light on the complex role of folate metabolism during development beyond a direct maternal effect.
Collapse
Affiliation(s)
- Amy L Wilkinson
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katerina Menelaou
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joanna Rakoczy
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Xiu S Tan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Erica D Watson
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Lee JG, Kim G, Park SG, Yon JM, Yeom J, Song HE, Cheong SA, Lim JS, Sung YH, Kim K, Yoo HJ, Hong EJ, Nam KH, Seong JK, Kim CJ, Nam SY, Baek IJ. Lipid signatures reflect the function of the murine primary placentation. Biol Reprod 2021; 106:583-596. [PMID: 34850819 DOI: 10.1093/biolre/ioab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The placenta regulates maternal-fetal communication, and its defect leads to significant pregnancy complications. The maternal and embryonic circulations are primitively connected in early placentation, but the function of the placenta during this developmentally essential period is relatively unknown. We thus performed a comparative proteomic analysis of the placenta before and after primary placentation and found that the metabolism and transport of lipids were characteristically activated in this period. The placental fatty acid (FA) carriers in specific placental compartments were upregulated according to gestational age, and metabolomic analysis also showed that the placental transport of FAs increased in a time-dependent manner. Further analysis of two mutant mice models with embryonic lethality revealed that lipid-related signatures could reflect the functional state of the placenta. Our findings highlight the importance of the nutrient transport function of the primary placenta in the early gestational period and the role of lipids in embryonic development.
Collapse
Affiliation(s)
- Jong Geol Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Globinna Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seul Gi Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Jung-Min Yon
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ha Eun Song
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-A Cheong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Hoan Nam
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Coxsackievirus and Adenovirus Receptor (CXADR): Recent Findings and Its Role and Regulation in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:95-109. [PMID: 34453733 DOI: 10.1007/978-3-030-77779-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coxsackievirus and adenovirus receptor (CXADR) belongs to immunoglobulin superfamily of cell adhesion molecules. It expresses in most tissues, but displays unique and indispensable functions in some tissues such as heart and testis. CXADR is a multifunctional protein that can serve as a viral receptor, a junction structural protein and a signalling molecule. Thus, it exerts a wide range of functions such as facilitating leukocyte transmigration, regulating barrier function and cell adhesion, promoting EMT transition, and mediating spermatogenesis. This review aims to provide an overview and highlights some recent findings on CXADR in the field with emphasis on studies in the testis, upon which future studies can be designed to delineate the roles and regulation of CXADR in spermatogenesis.
Collapse
|