1
|
Thangavelu L, Parthasarathy PR, Tharmar MAA. Ceramic Biomaterials in Dental Implantology—Time for Change of Status Quo: An Updated Review. WORLD JOURNAL OF DENTISTRY 2024; 15:733-742. [DOI: 10.5005/jp-journals-10015-2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Zheng M, Ma X, Tan J, Zhao H, Yang Y, Ye X, Liu M, Li H. Enhancement of Biocompatibility of High-Transparency Zirconia Abutments with Human Gingival Fibroblasts via Cold Atmospheric Plasma Treatment: An In Vitro Study. J Funct Biomater 2024; 15:200. [PMID: 39057321 PMCID: PMC11277629 DOI: 10.3390/jfb15070200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this study was to explore the effects of cold atmospheric plasma (CAP) treatment on the biological behavior of human gingival fibroblasts (HGFs) cultured on the surface of high-transparency zirconia. Two types of zirconia, 3Y-ZTP and 4Y-PSZ, were subjected to a CAP treatment for various treatment durations. Analyses of the physical and chemical properties of 3Y-ZTP and 4Y-PSZ were conducted using scanning electron microscopy, contact angle measurements, and X-ray photoelectron spectroscopy, both before and after CAP treatment. The biological responses of HGFs on both surfaces were assessed using CCK-8 assay, confocal laser scanning microscopy, and real-time PCR. Initially, the oxygen and hydroxyl contents on the surface of 4Y-PSZ exceeded those on 3Y-ZTP. CAP treatment enhanced the surface hydrophilicity and the reactive oxygen species (ROS) content of 4Y-PSZ, while not altering the surface morphology. After CAP treatment, HGFs' adhesion on 4Y-PSZ was superior, with more pronounced effects compared to 3Y-ZTP. Notably, HGFs counts and the expression of adhesion-related genes on 4Y-PSZ peaked following the CAP exposures for 30 s and 60 s. Consequently, this study demonstrates that, following identical CAP treatments, 4Y-PSZ is more effective in promoting HGFs adhesion compared to traditional 3Y-ZTP zirconia.
Collapse
Affiliation(s)
- Miao Zheng
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China; (M.Z.); (X.M.)
| | - Xinrong Ma
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China; (M.Z.); (X.M.)
| | - Jianguo Tan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (J.T.); (Y.Y.); (X.Y.)
| | - Hengxin Zhao
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
| | - Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (J.T.); (Y.Y.); (X.Y.)
| | - Xinyi Ye
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (J.T.); (Y.Y.); (X.Y.)
| | - Mingyue Liu
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100034, China
| | - Heping Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
3
|
Zhao D, Leng Y, Liu Y, Zhou X. Effect of calcium hydrothermal treatment of zirconia abutments on human gingival fibroblasts. J Biomed Mater Res B Appl Biomater 2023; 111:1883-1889. [PMID: 37289176 DOI: 10.1002/jbm.b.35291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Zirconia materials have been increasingly used in implant rehabilitation due to their excellent physical and esthetic properties. Stable peri-implant epithelial tissue adhesion to the transmucosal implant abutment may significantly enhance the efficacy of implant long-term stability. However, it is difficult to form stable chemical or biological bindings with peri-implant epithelial tissue due to the strong biological inertia of zirconia materials. In the present study, we investigated whether calcium hydrothermal treatment of zirconia promotes sealing of peri-implant epithelial tissue. In vitro experiments were performed to analyze the effects of calcium hydrothermal treatment on zirconia surface morphology and composition by scanning electron microscopy and energy dispersive spectrometry. Immunofluorescence staining of adherent proteins, namely, F-actin and integrin β1, in human gingival fibroblast line (HGF-l) cells was performed. In the calcium hydrothermal treatment group, there was higher expression of these adherent proteins and increased HGF-l cell proliferation. An in vivo study was conducted by extracting the maxillary right first molars of rats and replacing them with mini-zirconia abutment implants. The calcium hydrothermal treatment group showed better attachment at the zirconia abutment surface, which inhibited horseradish peroxidase penetration at 2 weeks post-implantation. These results demonstrated that calcium hydrothermal treatment of zirconia improves the seal between the implant abutment and surrounding epithelial tissues, potentially increasing the long-term stability of the implant.
Collapse
Affiliation(s)
- Dan Zhao
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yanjun Leng
- School of Stomatology, Central South University, Changsha, China
| | - Yishu Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xudiyang Zhou
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Tang K, Luo ML, Zhou W, Niu LN, Chen JH, Wang F. The integration of peri-implant soft tissues around zirconia abutments: Challenges and strategies. Bioact Mater 2023; 27:348-361. [PMID: 37180640 PMCID: PMC10172871 DOI: 10.1016/j.bioactmat.2023.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Stable soft tissue integration around the implant abutment attenuates pathogen penetration, protects underlying bone tissue, prevents peri-implantitis and is essential in maintaining long-term implant stability. The desire for "metal free" and "aesthetic restoration" has favored zirconia over titanium abutments, especially for implant restorations in the anterior region and for patients with thin gingival biotype. Soft tissue attachment to the zirconia abutment surface remains a challenge. A comprehensive review of advances in zirconia surface treatment (micro-design) and structural design (macro-design) affecting soft tissue attachment is presented and strategies and research directions are discussed. Soft tissue models for abutment research are described. Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.
Collapse
Affiliation(s)
- Kai Tang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meng-Lin Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, The First Medical Center, Chinese PLA General Hospital & Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li-Na Niu
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji-Hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| | - Fu Wang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
5
|
Huang C, Miao X, Li J, Liang J, Xu J, Wu Z. Promoted Abutment-Soft Tissue Integration Around Self-Glazed Zirconia Surfaces with Nanotopography Fabricated by Additive 3D Gel Deposition. Int J Nanomedicine 2023; 18:3141-3155. [PMID: 37333732 PMCID: PMC10276606 DOI: 10.2147/ijn.s404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving the biological sealing around dental abutments could promote the long-term success of implants. Although titanium abutments have a wide range of clinical applications, they incur esthetic risks due to their color, especially in the esthetic zone. Currently, zirconia has been applied as an esthetic alternative material for implant abutments; however, zirconia is purported to be an inert biomaterial. How to improve the biological activities of zirconia has thus become a popular research topic. In this study, we presented a novel self-glazed zirconia (SZ) surface with nanotopography fabricated by additive 3D gel deposition and investigated its soft tissue integration capability compared to that of clinically used titanium and polished conventional zirconia surfaces. Materials and Methods Three groups of disc samples were prepared for in vitro study and the three groups of abutment samples were prepared for in vivo study. The surface topography, roughness, wettability and chemical composition of the samples were examined. Moreover, we analyzed the effect of the three groups of samples on protein adsorption and on the biological behavior of human gingival keratinocytes (HGKs) and human gingival fibroblasts (HGFs). Furthermore, we conducted an in vivo study in which the bilateral mandibular anterior teeth of rabbits were extracted and replaced with implants and corresponding abutments. Results The surface of SZ showed a unique nanotopography with nm range roughness and a greater ability to absorb protein. The promoted expression of adhesion molecules in both HGKs and HGFs was observed on the SZ surface compared to the surfaces of Ti and PCZ, while the cell viability and proliferation of HGKs and the number of HGFs adhesion were not significant among all groups. In vivo results showed that the SZ abutment formed strong biological sealing at the abutment-soft tissue interface and exhibited markedly more hemidesmosomes when observed with a transmission electron microscope. Conclusion These results demonstrated that the novel SZ surface with nanotopography promoted soft tissue integration, suggesting its promising application as a zirconia surface for the dental abutment.
Collapse
Affiliation(s)
- Chaoyi Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Xinchao Miao
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jiang Li
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jieyi Liang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Junxi Xu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Brunello G, Rauch N, Becker K, Hakimi AR, Schwarz F, Becker J. Two-piece zirconia implants in the posterior mandible and maxilla: A cohort study with a follow-up period of 9 years. Clin Oral Implants Res 2022; 33:1233-1244. [PMID: 36184914 DOI: 10.1111/clr.14005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Long-term follow-up observations of zirconia implants are rare. This study aimed at evaluating the clinical performance of two-piece zirconia implants in the posterior jaws over 9 years. MATERIALS AND METHODS Sixty partially edentulous patients were treated with two-piece zirconia implants. In eight no primary stability could be achieved. Fifty-two patients received the final restoration (i.e., cemented fibreglass abutments and all-ceramic crowns). After 2 years, 2 implants failed and 4 dropouts were recorded. The remaining 46 patients with one target implant each were recalled at 9 years. Besides implant survival, clinical parameters at the implant level (plaque index-PI, bleeding on probing-BOP, probing depth-PD, mucosal recession-MR) were recorded and compared with previously collected data. Mechanical and technical complications were assessed. RESULTS Thirty patients responded. The mean observation period was of 111.1 ± 2.2 months. One implant was lost. Data recorded from the remaining 29 implants were analysed. PI values increased overtime. Mean BOP and PD remained unchanged during follow-up. No additional cases of peri-implantitis were recorded over the 10 diagnosed during the first 2 years of follow-up. No significant changes in mean MR values were detected over time, with 65% of the all included implants exhibiting no recession at 9 years and all the others, but one, a maximum MR of 1 mm. Three technical and 6 mechanical complications occurred in 7 patients between 2- and 9-years (6.9% and 20.7%, respectively, at patient level). CONCLUSION Within the limitations of the present study, a high survival rate was registered. Albeit frequent mechanical and technical complications, two-piece zirconia implants could represent a valid solution for the replacement of single teeth in the posterior jaws.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany.,Department of Neurosciences, Dentistry Section, University of Padova, Padova, Italy
| | - Nicole Rauch
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Kathrin Becker
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Ahmad R Hakimi
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany.,Private Practice, Berlin, Germany
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jürgen Becker
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Genova T, Chinigò G, Munaron L, Rivolo P, Luganini A, Gribaudo G, Cavagnetto D, Mandracci P, Mussano F. Bacterial and Cellular Response to Yellow-Shaded Surface Modifications for Dental Implant Abutments. Biomolecules 2022; 12:biom12111718. [PMID: 36421732 PMCID: PMC9687512 DOI: 10.3390/biom12111718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Dental implants have dramatically changed the rehabilitation procedures in dental prostheses but are hindered by the possible onset of peri-implantitis. This paper aims to assess whether an anodization process applied to clinically used surfaces could enhance the adhesion of fibroblasts and reduce bacterial adhesion using as a reference the untreated machined surface. To this purpose, four different surfaces were prepared: (i) machined (MAC), (ii) machined and anodized (Y-MAC), (iii) anodized after sand-blasting and acid etching treatment (Y-SL), and (iv) anodized after double acid etching (Y-DM). All specimens were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Moreover, the mean contact angle in both water and diiodomethane as well as surface free energy calculation was assessed. To evaluate changes in terms of biological responses, we investigated the adhesion of Streptococcus sanguinis (S. sanguinis) and Enterococcus faecalis (E. faecalis), fetal bovine serum (FBS) adsorption, and the early response of fibroblasts in terms of cell adhesion and viability. We found that the anodization reduced bacterial adhesion, while roughened surfaces outperformed the machined ones for protein adsorption, fibroblast adhesion, and viability independently of the treatment. It can be concluded that surface modification techniques such as anodization are valuable options to enhance the performance of dental implants.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Paola Rivolo
- Department of Applied Science and Technology, Materials and Microsoystems Laboratory (ChiLab), Politecnico di Torino, 10129 Torino, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Davide Cavagnetto
- Department of Surgical Sciences, CIR Dental School, University of Turin, 10126 Turin, Italy
- Politecnico di Torino, 10129 Torino, Italy
- Correspondence:
| | - Pietro Mandracci
- Department of Applied Science and Technology, Materials and Microsoystems Laboratory (ChiLab), Politecnico di Torino, 10129 Torino, Italy
| | - Federico Mussano
- Department of Surgical Sciences, CIR Dental School, University of Turin, 10126 Turin, Italy
| |
Collapse
|
8
|
Riivari S, Närvä E, Kangasniemi I, Willberg J, Närhi T. Epithelial cell attachment and adhesion protein expression on novel in sol TiO 2 coated zirconia and titanium alloy surfaces. J Biomed Mater Res B Appl Biomater 2022; 110:2533-2541. [PMID: 35730701 PMCID: PMC9543659 DOI: 10.1002/jbm.b.35111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 11/11/2022]
Abstract
An adequate mucosal attachment is important when it comes to preventing peri-implant inflammation. The aim of this study was to compare epithelial cell adhesion and adhesion protein expression on in sol TiO2 -coated and non-coated zirconia and titanium alloy surfaces. Fifty-six zirconia and titanium discs were cut, and half of them were coated with bioactive TiO2 -coating. To study the epithelial cell attachment, human gingival keratinocytes were cultivated on discs for 1, 3, 6, and 24 h. The cell proliferation was detected by cultivating cells for 1, 3, and 7 days. In addition, the levels of adhesion proteins laminin y2, integrin α6, β4, vinculin, and paxillin were detected with Western Blot method. Furthermore, high-resolution imaging of the actin cytoskeleton and focal adhesion proteins was established. Longer-term cell culture (1-7 days) revealed higher cell numbers on the coated zirconia and titanium discs compared to non-coated discs. The difference was statistically significant (p < .05) after 24 h on coated zirconia and after 3 and 7 days on coated titanium discs compared to non-coated discs. Clear induction in the protein levels of laminin y2 and integrin α6 were detected on both coated samples, meanwhile integrin β4 were clearly induced on coated titanium alloy. The microscope evaluation showed significantly increased cell spreading on the coated discs. According to this study, the in sol induced TiO2 -coating increases keratinocyte attachment and the expression of adhesion proteins on coated zirconia and titanium in vitro. Consequently, the coating has potential to enhance the mucosal attachment on implant surfaces.
Collapse
Affiliation(s)
- Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, University of Turku, Turku, Finland
| | - Elisa Närvä
- Institute of Biomedicine and Cancer Research Laboratory FICAN West, University of Turku, Turku, Finland
| | | | - Jaana Willberg
- Department of Oral Pathology and Oral Radiology, University of Turku, Turku, Finland.,Department of Pathology, Turku University Central Hospital, Turku, Finland
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Kunrath MF, Gupta S, Lorusso F, Scarano A, Noumbissi S. Oral Tissue Interactions and Cellular Response to Zirconia Implant-Prosthetic Components: A Critical Review. MATERIALS 2021; 14:ma14112825. [PMID: 34070589 PMCID: PMC8198172 DOI: 10.3390/ma14112825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Background: Dental components manufactured with zirconia (ZrO2) represent a significant percentage of the implant prosthetic market in dentistry. However, during the last few years, we have observed robust clinical and pre-clinical scientific investigations on zirconia both as a prosthetic and an implantable material. At the same time, we have witnessed consistent technical and manufacturing updates with regards to the applications of zirconia which appear to gradually clarify points which until recently were not well understood. Methods: This critical review evaluated the “state of the art” in relation to applications of this biomaterial in dental components and its interactions with oral tissues. Results: The physico-chemical and structural properties as well as the current surface treatment methodologies for ZrO2 were explored. A critical investigation of the cellular response to this biomaterial was completed and the clinical implications discussed. Finally, surface treatments of ZrO2 demonstrate that excellent osseointegration is possible and provide encouraging prospects for rapid bone adhesion. Furthermore, sophisticated surface treatment techniques and technologies are providing impressive oral soft tissue cell responses thus leading to superior biological seal. Conclusions: Dental devices manufactured from ZrO2 are structurally and chemically stable with biocompatibility levels allowing for safe and long-term function in the oral environment.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil;
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil
| | - Saurabh Gupta
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Master Dental Science, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
| | - Antonio Scarano
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
- Correspondence: ; Tel.: +08713554084
| | - Sammy Noumbissi
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
| |
Collapse
|