1
|
Kundu S, Gairola S, Verma S, Mugale MN, Sahu BD. Chronic kidney disease activates the HDAC6-inflammatory axis in the heart and contributes to myocardial remodeling in mice: inhibition of HDAC6 alleviates chronic kidney disease-induced myocardial remodeling. Basic Res Cardiol 2024; 119:831-852. [PMID: 38771318 DOI: 10.1007/s00395-024-01056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Chronic kidney disease (CKD) adversely affects the heart. The underlying mechanism and the interplay between the kidney and the heart are still obscure. We examined the cardiac effect using the unilateral ureteral obstruction (UUO)-induced CKD pre-clinical model in mice. Echocardiography, histopathology of the heart, myocardial mRNA expression of ANP and BNP, the extent of fibrotic (TGF-β, α-SMA, and collagen I) and epigenetic (histone deacetylases, namely HDAC3, HDAC4, and HDAC6) proteins, and myocardial inflammatory response were assessed. Six weeks of post-UUO surgery, we observed a compromised left-ventricular wall thickness and signs of cardiac hypertrophy, accumulation of fibrosis associated, and inflammatory proteins in the heart. In addition, we observed a perturbation of epigenetic proteins, especially HDAC3, HDAC4, and HDAC6, in the heart. Pharmacological inhibition of HDAC6 using ricolinostat (RIC) lessened cardiac damage and improved left-ventricular wall thickness. The RIC treatment substantially restored the serum cardiac injury markers, namely creatine kinase-MB and lactate dehydrogenase (LDH) activities, ANP and BNP mRNA expression, and heart histological changes. The extent of myocardial fibrotic proteins, phospho-NF-κB (p65), and pro-inflammatory cytokines (TNF-α, IL-18, and IL-1β) were significantly decreased in the RIC treatment group. Further findings revealed the CKD-induced infiltration of CD3, CD8a, CD11c, and F4/80 positive inflammatory cells in the heart. Treatment with RIC substantially reduced the myocardial infiltration of these inflammatory cells. From these findings, we believe that CKD-induced myocardial HDAC6 perturbation has a deteriorative effect on the heart, and inhibition of HDAC6 can be a promising approach to alleviate CKD-induced myocardial remodeling.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, 781101, India
| | - Shobhit Gairola
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, 781101, India
| | - Smriti Verma
- Department of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Madhav Nilakanth Mugale
- Department of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, 781101, India.
| |
Collapse
|
2
|
Maryam B, Smith ME, Miller SJ, Natarajan H, Zimmerman KA. Macrophage Ontogeny, Phenotype, and Function in Ischemia Reperfusion-Induced Injury and Repair. KIDNEY360 2024; 5:459-470. [PMID: 38297436 PMCID: PMC11000738 DOI: 10.34067/kid.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 β , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.
Collapse
Affiliation(s)
- Bibi Maryam
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Morgan E. Smith
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Miller
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariharasudan Natarajan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
3
|
Rendra E, Uhlig S, Moskal I, Thielemann C, Klüter H, Bieback K. Adipose Stromal Cell-Derived Secretome Attenuates Cisplatin-Induced Injury In Vitro Surpassing the Intricate Interplay between Proximal Tubular Epithelial Cells and Macrophages. Cells 2024; 13:121. [PMID: 38247813 PMCID: PMC10814170 DOI: 10.3390/cells13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: The chemotherapeutic drug cisplatin exerts toxic side effects causing acute kidney injury. Mesenchymal stromal cells can ameliorate cisplatin-induced kidney injury. We hypothesize that the MSC secretome orchestrates the vicious cycle of injury and inflammation by acting on proximal tubule epithelial cells (PTECs) and macrophages individually, but further by counteracting their cellular crosstalk. (2) Methods: Conditioned medium (CM) from adipose stromal cells was used, first assessing its effect on cisplatin injury in PTECs. Second, the effects of cisplatin and the CM on macrophages were measured. Lastly, in an indirect co-culture system, the interplay between the two cell types was assessed. (3) Results: First, the CM rescued PTECs from cisplatin-induced apoptosis by reducing oxidative stress and expression of nephrotoxicity genes. Second, while cisplatin exerted only minor effects on macrophages, the CM skewed macrophage phenotypes to the anti-inflammatory M2-like phenotype and increased phagocytosis. Finally, in the co-culture system, the CM suppressed PTEC death by inhibiting apoptosis and nuclei fragmentation. The CM lowered TNF-α release, while cisplatin inhibited macrophage phagocytosis, PTECs, and the CM to a greater extent, thus enhancing it. The CM strongly dampened the inflammatory macrophage cytokine secretion triggered by PTECs. (4) Conclusions: ASC-CM surpasses the PTEC-macrophage crosstalk in cisplatin injury. The positive effects on reducing cisplatin cytotoxicity, on polarizing macrophages, and on fine-tuning cytokine secretion underscore MSCs' CM benefit to prevent kidney injury progression.
Collapse
Affiliation(s)
- Erika Rendra
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Isabell Moskal
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Corinna Thielemann
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Yoshino S, Matsubara Y, Kurose S, Yamashita S, Morisaki K, Furuyama T, Yoshizumi T. Left Renal Vein Division during Open Surgical Repair for Abdominal Aortic Aneurysm May Cause Long-Term Kidney Remodeling. Ann Vasc Surg 2023; 96:155-165. [PMID: 37075832 DOI: 10.1016/j.avsg.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Left renal vein division (LRVD) is a maneuver performed during open surgical repair for abdominal aortic aneurysms. Even so, the long-term effects of LRVD on renal remodeling are unknown. Therefore, we hypothesized that interrupting the venous return of the left renal vein might cause renal congestion and fibrotic remodeling of the left kidney. METHODS We used a murine left renal vein ligation model with 8-week-old to 12-week-old wild-type male mice. Bilateral kidneys and blood samples were harvested postoperatively on days 1, 3, 7, and 14. We assessed the renal function and the pathohistological changes in the left kidneys. In addition, we retrospectively analyzed 174 patients with open surgical repairs between 2006 and 2015 to assess the influence of LRVD on clinical data. RESULTS Temporary renal decline with left kidney swelling occurred in a murine left renal vein ligation model. In the pathohistological assessment of the left kidney, macrophage accumulation, necrotic atrophy, and renal fibrosis were observed. In addition, Myofibroblast-like macrophage, which is involved in renal fibrosis, was observed in the left kidney. We also noted that LRVD was associated with temporary renal decline and left kidney swelling. LRVD did not, however, impair renal function in long-term observation. Additionally, the relative cortical thickness of the left kidney in the LRVD group was significantly lower than that of the right kidney. These findings indicated that LRVD was associated with left kidney remodeling. CONCLUSIONS Venous return interruption of the left renal vein is associated with left kidney remodeling. Furthermore, interruption in the venous return of the left renal vein does not correlate with chronic renal failure. Therefore, we suggest careful follow-up of renal function after LRVD.
Collapse
Affiliation(s)
- Shinichiro Yoshino
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Matsubara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shun Kurose
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Morisaki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Furuyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Maiwall R, Pasupuleti SSR, Hidam AK, Rastogi A, Thomas S, Kumar G, Kumar A, Sarin SK. Non-resolution of acute kidney injury in the first week portends the development of chronic kidney disease in critically ill patients with cirrhosis. Aliment Pharmacol Ther 2023; 58:593-610. [PMID: 37455381 DOI: 10.1111/apt.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Renal tubular epithelial cells (RTECs) cause maladaptive repair and perpetuate renal fibrosis. AIM To evaluate urinary neutrophil gelatinase-associated lipocalin (NGAL) and RTEC as risk factors for non-resolution of acute kidney injury (AKI-NR) at day seven and chronic kidney disease (CKD) in critically ill patients with cirrhosis. METHODS We performed urinary NGAL and microscopy at enrolment and day 7 in all patients. We assessed 17 renal injury, endothelial injury and repair markers, genes for mitochondrial biogenesis by qRT-PCR in RTEC, and post-mortem renal biopsies for understanding mechanisms of AKI non-resolution (n = 30). RESULTS We enrolled 310 patients, aged 48.1 ± 11.6 years, 87% male, 90% alcoholic. Of these, 36% had RTEC at enrolment, and 53% had AKI-NR on day 7. On mean follow-up of 136 days (range 43-365), 150 (48.3%) developed CKD. The presence of RTEC or granular casts, NGAL and AKI-NR were independent predictors of CKD development on competing risk analysis. Higher MCP-1, renal endothelial injury, decrease in tubular repair markers and failure of mitochondrial biogenesis in RTEC were seen in patients with AKI-NR compared with AKI-R (p < 0.05). Renal biopsies showed infiltration with monocyte-macrophage, increased α-SMA, and tubulointerstitial fibrosis. CONCLUSION Almost two-thirds of critically ill patients with cirrhosis have AKI, which resolves in only one-half at day seven and predicts the development of CKD. Higher NGAL, RTEC, or granular casts were independent predictors of AKI-NR and CKD development. Enhanced tubular and endothelial injury, decreased repair, monocyte-macrophage infiltration and mitochondrial dysfunction in RTEC are associated with AKI non-resolution and risk of renal fibrosis.
Collapse
Affiliation(s)
- Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Samba Siva Rao Pasupuleti
- Department of Statistics, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, India
- Department of Applied Mathematics and Statistics, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, India
| | - Ashini Kumar Hidam
- Department of Clinical and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sherin Thomas
- Department of Biochemistry, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Guresh Kumar
- Department of Biostatistics, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anupam Kumar
- Department of Clinical and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
6
|
Oh H, Kwon O, Kong MJ, Park KM, Baek JH. Macrophages promote Fibrinogenesis during kidney injury. Front Med (Lausanne) 2023; 10:1206362. [PMID: 37425313 PMCID: PMC10325639 DOI: 10.3389/fmed.2023.1206362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Macrophages (Mø) are widely considered fundamental in the development of kidney fibrosis since Mø accumulation commonly aggravates kidney fibrosis, while Mø depletion mitigates it. Although many studies have aimed to elucidate Mø-dependent mechanisms linked to kidney fibrosis and have suggested various mechanisms, the proposed roles have been mostly passive, indirect, and non-unique to Mø. Therefore, the molecular mechanism of how Mø directly promote kidney fibrosis is not fully understood. Recent evidence suggests that Mø produce coagulation factors under diverse pathologic conditions. Notably, coagulation factors mediate fibrinogenesis and contribute to fibrosis. Thus, we hypothesized that kidney Mø express coagulation factors that contribute to the provisional matrix formation during acute kidney injury (AKI). To test our hypothesis, we probed for Mø-derived coagulation factors after kidney injury and uncovered that both infiltrating and kidney-resident Mø produce non-redundant coagulation factors in AKI and chronic kidney disease (CKD). We also identified F13a1, which catalyzes the final step of the coagulation cascade, as the most strongly upregulated coagulation factor in murine and human kidney Mø during AKI and CKD. Our in vitro experiments revealed that the upregulation of coagulation factors in Mø occurs in a Ca2 + -dependent manner. Taken together, our study demonstrates that kidney Mø populations express key coagulation factors following local injury, suggesting a novel effector mechanism of Mø contributing to kidney fibrosis.
Collapse
Affiliation(s)
- Hanna Oh
- Laboratory of Inflammation Research, Handong Global University, Pohang, Gyeongbuk, South Korea
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, South Korea
| | - Ohbin Kwon
- Laboratory of Inflammation Research, Handong Global University, Pohang, Gyeongbuk, South Korea
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, South Korea
| | - Min Jung Kong
- Department of Anatomy, BK21Plus, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kwon Moo Park
- Department of Anatomy, BK21Plus, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jea-Hyun Baek
- Laboratory of Inflammation Research, Handong Global University, Pohang, Gyeongbuk, South Korea
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, South Korea
| |
Collapse
|
7
|
Vernier ICS, Neres-Santos RS, Andrade-Oliveira V, Carneiro-Ramos MS. Immune Cells Are Differentially Modulated in the Heart and the Kidney during the Development of Cardiorenal Syndrome 3. Cells 2023; 12:605. [PMID: 36831272 PMCID: PMC9953884 DOI: 10.3390/cells12040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Cardiorenal syndrome type 3 (CRS 3) occurs when there is an acute kidney injury (AKI) leading to the development of an acute cardiac injury. The immune system is involved in modulating the severity of kidney injury, and the role of immune system cells in the development of CRS 3 is not well established. The present work aims to characterize the macrophage and T and B lymphocyte populations in kidney and heart tissue after AKI induced by renal I/R. Thus, C57BL/6 mice were subjected to a renal I/R protocol by occlusion of the left renal pedicle (unilateral) for 60 min, followed by reperfusion for 3, 8 and 15 days. The immune cell populations of interest were identified using flow cytometry, and RT-qPCR was used to evaluate gene expression. As a result, a significant increase in TCD4+, TCD8+ lymphocytes and M1 macrophages to the renal tissue was observed, while B cells in the heart decreased. A renal tissue repair response characterized by Foxp3 activation predominated. However, a more inflammatory profile was shown in the heart tissue influenced by IL-17RA and IL-1β. In conclusion, the AKI generated by renal I/R was able to activate and recruit T and B lymphocytes and macrophages, as well as pro-inflammatory mediators to renal and cardiac tissue, showing the role of the immune system as a bridge between both organs in the context of CRS 3.
Collapse
Affiliation(s)
- Imara Caridad Stable Vernier
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Laboratory, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| |
Collapse
|
8
|
Li B, Lin F, Xia Y, Ye Z, Yan X, Song B, Yuan T, Li L, Zhou X, Yu W, Cheng F. The Intersection of Acute Kidney Injury and Non-Coding RNAs: Inflammation. Front Physiol 2022; 13:923239. [PMID: 35755446 PMCID: PMC9218900 DOI: 10.3389/fphys.2022.923239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Acute renal injury (AKI) is a complex clinical syndrome, involving a series of pathophysiological processes, in which inflammation plays a key role. Identification and verification of gene signatures associated with inflammatory onset and progression are imperative for understanding the molecular mechanisms involved in AKI pathogenesis. Non-coding RNAs (ncRNAs), involved in epigenetic modifications of inflammatory responses, are associated with the aberrant expression of inflammation-related genes in AKI. However, its regulatory role in gene expression involves precise transcriptional regulation mechanisms which have not been fully elucidated in the complex and volatile inflammatory response of AKI. In this study, we systematically review current research on the intrinsic molecular mechanisms of ncRNAs that regulate the inflammatory response in AKI. We aim to provide potential research directions and strategies for developing ncRNA-targeted gene therapies as an intervention for the inflammatory damage in AKI.
Collapse
Affiliation(s)
- Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinzhou Yan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianhui Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Sedmaki K, Karnam K, Sharma P, Mahale A, Routholla G, Ghosh B, Prakash Kulkarni O. HDAC6 inhibition attenuates renal injury by reducing IL-1β secretion and RIP kinase mediated necroptosis in acute oxalate nephropathy. Int Immunopharmacol 2022; 110:108919. [PMID: 35717839 DOI: 10.1016/j.intimp.2022.108919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pathogenesis of acute kidney injury is driven by necro-inflammation, which is comprised of IL-1β mediated inflammation and RIP-1 mediated tubular necroptosis. HDAC6 is reported to regulate both inflammation and cell death. In the present study, we explored the role of HDAC6 in the lysosomal exocytosis of IL-1β and RIP-1 mediated necroptosis in the context of oxalate nephropathy. METHODS Raw 264.7 macrophages and NRK52E stimulated with oxalate crystals and LPS with or without HDAC6 inhibitor for in vitro experiments. Acute oxalate nephropathy was induced in C57BL/6 mice by injecting sodium oxalate (75 mg/kg). For the drug intervention study, Tubastain A (TSA) was given an hour before injection of sodium oxalate. Mice were sacrificed 24 hrs after the oxalate injection, blood and kidney were harvested. Blood samples were analyzed for BUN and IL-1β levels. Renal tissues were analyzed for histology, immunohistochemistry, RNA, and protein expression. RESULTS HDAC6 and IL-1β upregulated in crystal stimulated macrophages and acute oxalate nephropathy. Pre-treatment of macrophages with TSA reduced IL-1β in supernatant without affecting the expression of pro-IL-1β and mature IL-1β in cell lysate. The effect of TSA on IL-1β secretion was influenced by tubulin acetylation. Renal epithelial cell NRK52E stimulated with crystals showed upregulation of necroptosis pathway markers and concentration-dependent cell death. TSA inhibited RIP-1, RIP3, and MLKL expression along with p-MLKL in stimulated epithelial cells. TSA treatment of oxalate nephropathy mice showed decreased inflammation and tubular cell death by regulating IL-1β and necroptosis and reduced renal injury. CONCLUSION This study highlights the role of HDAC6 in regulating the tubulin-mediated secretion of IL-1β and RIP kinase mediated necroptosis in acute oxalate nephropathy.
Collapse
Affiliation(s)
- Kavitha Sedmaki
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad campus, India
| | - Kalyani Karnam
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad campus, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad campus, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad campus, India
| | - Ganesh Routholla
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad campus, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad campus, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad campus, India.
| |
Collapse
|
10
|
Macrophage Migration Inhibitory Factor (MIF) as a Stress Molecule in Renal Inflammation. Int J Mol Sci 2022; 23:ijms23094908. [PMID: 35563296 PMCID: PMC9102975 DOI: 10.3390/ijms23094908] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Renal inflammation is an initial pathological process during progressive renal injury regardless of the initial cause. Macrophage migration inhibitory factor (MIF) is a truly proinflammatory stress mediator that is highly expressed in a variety of both inflammatory cells and intrinsic kidney cells. MIF is released from the diseased kidney immediately upon stimulation to trigger renal inflammation by activating macrophages and T cells, and promoting the production of proinflammatory cytokines, chemokines, and stress molecules via signaling pathways involving the CD74/CD44 and chemokine receptors CXCR2, CXCR4, and CXCR7 signaling. In addition, MIF can function as a stress molecule to counter-regulate the immunosuppressive effect of glucocorticoid in renal inflammation. Given the critical position of MIF in the upstream inflammatory cascade, this review focuses on the regulatory role and molecular mechanisms of MIF in kidney diseases. The therapeutic potential of targeting MIF signaling to treat kidney diseases is also discussed.
Collapse
|
11
|
Li N, Chen J, Geng C, Wang X, Wang Y, Sun N, Wang P, Han L, Li Z, Fan H, Hou S, Gong Y. Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI. Cell Death Dis 2022; 8:90. [PMID: 35228524 PMCID: PMC8885737 DOI: 10.1038/s41420-022-00894-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
Crush syndrome (CS) is a life-threatening illness in traffic accidents and earthquakes. Crush syndrome-induced acute kidney injury (CS-AKI) is considered to be mainly due to myoglobin (Mb) circulation and deposition after skeletal muscle ruptures and releases. Macrophages are the primary immune cells that fight foreign substances and play critical roles in regulating the body's natural immune response. However, what effect does myoglobin have on macrophages and the mechanisms involved in the CS-AKI remain unclear. This study aims to look into how myoglobin affects macrophages of the CS-AKI model. C57BL/6 mice were used to construct the CS-AKI model by digital crush platform. Biochemical analysis and renal histology confirmed the successful establishment of the CS-AKI mouse model. Ferrous myoglobin was used to treat Raw264.7 macrophages to mimic the CS-AKI cell model in vitro. The macrophage polarization toward M1 type and activation of RIG-I as myoglobin sensor were verified by real-time quantitative PCR (qPCR), Western blotting (WB), and immunofluorescence (IF). Macrophage pyroptosis was observed under light microscopy. The interaction between RIG-I and caspase1 was subsequently explored by co-immunoprecipitation (Co-IP) and IF. Small interfering RNA (siRIG-I) and pyroptosis inhibitor dimethyl fumarate (DMF) were used to verify the role of macrophage polarization and pyroptosis in CS-AKI. In the kidney tissue of CS-AKI mice, macrophage infiltration and M1 type were found. We also detected that in the cell model of CS-AKI in vitro, ferrous myoglobin treatment promoted macrophages polarization to M1. Meanwhile, we observed pyroptosis, and myoglobin activated the RIG-I/Caspase1/GSDMD signaling pathway. In addition, pyroptosis inhibitor DMF not only alleviated kidney injury of CS-AKI mice but also inhibited macrophage polarization to M1 phenotype and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway. Our research found that myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI.
Collapse
Affiliation(s)
- Ning Li
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Jiale Chen
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Chenhao Geng
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Xinyue Wang
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Yuru Wang
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Na Sun
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Pengtao Wang
- Department of Intensive Care Unit, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Lu Han
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Zizheng Li
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Haojun Fan
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China. .,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.
| | - Yanhua Gong
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China. .,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.
| |
Collapse
|
12
|
Ribeiro A, Dobosz E, Krill M, Köhler P, Wadowska M, Steiger S, Schmaderer C, Koziel J, Lech M. Macrophage-Specific MCPIP1/Regnase-1 Attenuates Kidney Ischemia-Reperfusion Injury by Shaping the Local Inflammatory Response and Tissue Regeneration. Cells 2022; 11:cells11030397. [PMID: 35159206 PMCID: PMC8834155 DOI: 10.3390/cells11030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Sterile inflammation either resolves the initial insult or leads to tissue damage. Kidney ischemia/reperfusion injury (IRI) is associated with neutrophilic infiltration, enhanced production of inflammatory mediators, accumulation of necrotic cells and tissue remodeling. Macrophage-dependent microenvironmental changes orchestrate many features of the immune response and tissue regeneration. The activation status of macrophages is influenced by extracellular signals, the duration and intensity of the stimulation, as well as various regulatory molecules. The role of macrophage-derived monocyte chemoattractant protein-induced protein 1 (MCPIP1), also known as Regnase-1, in kidney ischemia-reperfusion injury (IRI) and recovery from sterile inflammation remains unresolved. In this study, we showed that macrophage-specific Mcpip1 deletion significantly affects the kidney phenotype. Macrophage-specific Mcpip1 transgenic mice displayed enhanced inflammation and loss of the tubular compartment upon IRI. We showed that MCPIP1 modulates sterile inflammation by negative regulation of Irf4 expression and accumulation of IRF4+ cells in the tissue and, consequently, suppresses the post-ischemic kidney immune response. Thus, we identified MCPIP1 as an important molecular sentinel of immune homeostasis in experimental acute kidney injury (AKI) and renal fibrosis.
Collapse
Affiliation(s)
- Andrea Ribeiro
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, 80336 Munich, Germany;
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Moritz Krill
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Paulina Köhler
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Stefanie Steiger
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, 80336 Munich, Germany;
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Maciej Lech
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
- Correspondence:
| |
Collapse
|
13
|
Nordlohne J, Hulsmann I, Schwafertz S, Zgrajek J, Grundmann M, von Vietinghoff S, Eitner F, Becker MS. A flow cytometry approach reveals heterogeneity in conventional subsets of murine renal mononuclear phagocytes. Sci Rep 2021; 11:13251. [PMID: 34168267 PMCID: PMC8225656 DOI: 10.1038/s41598-021-92784-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Mononuclear phagocytes (MNPs) participate in inflammation and repair after kidney injury, reflecting their complex nature. Dissection into refined functional subunits has been challenging and would benefit understanding of renal pathologies. Flow cytometric approaches are limited to classifications of either different MNP subsets or functional state. We sought to combine these two dimensions in one protocol that considers functional heterogeneity in each MNP subset. We identified five distinct renal MNP subsets based on a previously described strategy. In vitro polarization of bone marrow-derived macrophages (BMDM) into M1- and M2-like cells suggested functional distinction of CD86 + MHCII + CD206- and CD206 + cells. Combination of both distinction methods identified CD86 + MHCII + CD206- and CD206 + cells in all five MNP subsets, revealing their heterologous nature. Our approach revealed that MNP composition and their functional segmentation varied between different mouse models of kidney injury and, moreover, was dynamically regulated in a time-dependent manner. CD206 + cells from three analyzed MNP subsets had a higher ex vivo phagocytic capacity than CD86 + MHCII + CD206- counterparts, indicating functional uniqueness of each subset. In conclusion, our novel flow cytometric approach refines insights into renal MNP heterogeneity and therefore could benefit mechanistic understanding of renal pathology.
Collapse
Affiliation(s)
- Johannes Nordlohne
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Ilona Hulsmann
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Svenja Schwafertz
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Jasmin Zgrajek
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Manuel Grundmann
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Sibylle von Vietinghoff
- Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Frank Eitner
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Michael S Becker
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany.
| |
Collapse
|
14
|
Nash WT, Okusa MD. Chess Not Checkers: Complexities Within the Myeloid Response to the Acute Kidney Injury Syndrome. Front Med (Lausanne) 2021; 8:676688. [PMID: 34124107 PMCID: PMC8187556 DOI: 10.3389/fmed.2021.676688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Immune dysregulation in acute kidney injury (AKI) is an area of intense interest which promises to enhance our understanding of the disease and how to manage it. Macrophages are a heterogeneous and dynamic population of immune cells that carry out multiple functions in tissue, ranging from maintenance to inflammation. As key sentinels of their environment and the major immune population in the uninjured kidney, macrophages are poised to play an important role in the establishment and pathogenesis of AKI. These cells have a profound capacity to orchestrate downstream immune responses and likely participate in skewing the kidney environment toward either pathogenic inflammation or injury resolution. A clear understanding of macrophage and myeloid cell dynamics in the development of AKI will provide valuable insight into disease pathogenesis and options for intervention. This review considers evidence in the literature that speaks to the role and regulation of macrophages and myeloid cells in AKI. We also highlight barriers or knowledge gaps that need to be addressed as the field advances.
Collapse
Affiliation(s)
- William T Nash
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mark D Okusa
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
15
|
Li N, Chen J, Wang P, Fan H, Hou S, Gong Y. Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Mol Med Rep 2021; 23:455. [PMID: 33880578 PMCID: PMC8072315 DOI: 10.3892/mmr.2021.12094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) has become a global public health problem with high morbidity and mortality rates, as well as high healthcare costs. Immune cells, particularly macrophages, which regulate tissue development, destroy pathogens, control homeostasis and repair wounds, play crucial and complex roles in AKI. In various types of AKI, numerous rapidly recruited monocytes and tissue-resident macrophages act in a coordinated manner. Thus, elucidating the phenotypic and functional characteristics of macrophages in AKI is essential for identifying potential therapeutic targets. Macrophage-sensing mediators and macrophage-derived mediators participate in the major macrophage-related signaling pathways in AKI, which regulate macrophage polarization and determine disease progression. In conclusion, macrophages change their roles and regulatory mechanisms during the occurrence and development of AKI. The aim of the present review was to contribute to an improved understanding of AKI and to the identification of novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Jiale Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
16
|
Tanaka M, Saka-Tanaka M, Ochi K, Fujieda K, Sugiura Y, Miyamoto T, Kohda H, Ito A, Miyazawa T, Matsumoto A, Aoe S, Miyamoto Y, Tsuboi N, Maruyama S, Suematsu M, Yamasaki S, Ogawa Y, Suganami T. C-type lectin Mincle mediates cell death-triggered inflammation in acute kidney injury. J Exp Med 2021; 217:152022. [PMID: 32797195 PMCID: PMC7596812 DOI: 10.1084/jem.20192230] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that cell death triggers sterile inflammation and that impaired clearance of dead cells causes nonresolving inflammation; however, the underlying mechanisms are still unclear. Here, we show that macrophage-inducible C-type lectin (Mincle) senses renal tubular cell death to induce sustained inflammation after acute kidney injury in mice. Mincle-deficient mice were protected against tissue damage and subsequent atrophy of the kidney after ischemia–reperfusion injury. Using lipophilic extract from the injured kidney, we identified β-glucosylceramide as an endogenous Mincle ligand. Notably, free cholesterol markedly enhanced the agonistic effect of β-glucosylceramide on Mincle. Moreover, β-glucosylceramide and free cholesterol accumulated in dead renal tubules in proximity to Mincle-expressing macrophages, where Mincle was supposed to inhibit clearance of dead cells and increase proinflammatory cytokine production. This study demonstrates that β-glucosylceramide in combination with free cholesterol acts on Mincle as an endogenous ligand to induce cell death–triggered, sustained inflammation after acute kidney injury.
Collapse
Affiliation(s)
- Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Marie Saka-Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozue Ochi
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kumiko Fujieda
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Tomofumi Miyamoto
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiro Kohda
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taiki Miyazawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiichiro Aoe
- Department of Home Economics, Otsuma Women's University, Tokyo, Japan
| | - Yoshihiro Miyamoto
- Division of Genomic Diagnosis and Healthcare, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Choi I, Son H, Baek JH. Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses. Life (Basel) 2021; 11:69. [PMID: 33477822 PMCID: PMC7832849 DOI: 10.3390/life11010069] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss its implication for immune activation and suppression.
Collapse
Affiliation(s)
| | | | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk 37554, Korea; (I.C.); (H.S.)
| |
Collapse
|
18
|
Wada Y, Iyoda M, Matsumoto K, Suzuki T, Tachibana S, Kanazawa N, Honda H. Reno-protective effect of IL-34 inhibition on cisplatin-induced nephrotoxicity in mice. PLoS One 2021; 16:e0245340. [PMID: 33428678 PMCID: PMC7799787 DOI: 10.1371/journal.pone.0245340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Interleukin-34 (IL-34) shares a receptor (cFMS) with colony stimulating factor-1 (CSF-1), and these two ligands mediate macrophage proliferation. However, in contrast to CSF-1, the influence of IL-34 on tubular epithelial cells (TECs) injury remains unclear. We investigated the physiological effects of IL-34 on TEC damage caused by cisplatin nephrotoxicity (CP-N). METHODS Mice were administered anti-mouse IL-34 antibody (anti-IL-34 Ab; 400 ng/kg) or vehicle from 1 day before and up to 2 days after CP-N induction. In vitro, mouse renal proximal TECs (MRPTEpiC) were cultured to analyze the inhibitory effects of IL-34 on CP-induced TEC apoptosis. RESULTS Compared to vehicle treatment, anti-IL-34 Ab treatment significantly suppressed the intra-renal expression of IL-34 and its two receptors, cFMS and PTP-ζ, and significantly improved renal function, ameliorated tubulointerstitial injury, suppressed macrophage infiltration, and reduced apoptotic cell numbers in CP-N mice. It also significantly reduced the renal transcript levels of Kim-1, MIP-1/CCL3, TNF-α, and Bax in CP-N mice. Furthermore, anti-IL-34 Ab-treated CP-N mice showed less renal infiltration of F4/80+TNF-α+ cells. In vitro, stimulation with CP induced the expression of IL-34 and its two receptors in MRPTEpiC. Anti-IL-34 Ab treatment significantly suppressed CP-induced Bax expression with the degradation of ERK1/2 phosphorylation in damaged MRPTEpiC. CONCLUSIONS IL-34 secreted from damaged TECs appeared to be involved in the progression of CP-N. Inhibition of IL-34 with neutralizing antibody directly prevented CP-induced TEC apoptosis by inhibiting the phosphorylation of ERK 1/2. Blocking of IL-34 appears to suppress the proliferation of cytotoxic macrophages, which indirectly attenuates CP-N. Thus, IL-34 represents a potential therapeutic target for TEC injury, and the inhibition of IL-34 might have a reno-protective effect.
Collapse
Affiliation(s)
- Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.,Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shohei Tachibana
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nobuhiro Kanazawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Abstract
Interstitial inflammation is an important feature of cystic kidney disease. Renal macrophages are the most well-studied inflammatory cell in the kidney, and their involvement in cyst formation has been reported in different animal models and patients with cystic kidney disease. Originally, it was believed that renal macrophages were maintained from a constant supply of bone marrow-derived circulating monocytes, and could be recruited to the kidney in response to local inflammation. However, this idea has been challenged using fate-mapping methods, by showing that at least two distinct developmental origins of macrophages are present in the adult mouse kidney. The first type, infiltrating macrophages, are recruited from circulating monocytes and gradually develop macrophage properties on entering the kidney. The second, resident macrophages, predominantly originate from embryonic precursors, colonize the kidney during its development, and proliferate in situ to maintain their population throughout adulthood. Infiltrating and resident macrophages work together to maintain homeostasis and properly respond to pathologic conditions, such as AKI, cystic kidney disease, or infection. This review will briefly summarize current knowledge of resident macrophages in cystic kidney disease.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
20
|
Deng X, Yang Q, Wang Y, Zhou C, Guo Y, Hu Z, Liao W, Xu G, Zeng R. CSF-1R inhibition attenuates ischemia-induced renal injury and fibrosis by reducing Ly6C + M2-like macrophage infiltration. Int Immunopharmacol 2020; 88:106854. [PMID: 32771945 DOI: 10.1016/j.intimp.2020.106854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 01/15/2023]
Abstract
Acute kidney injury (AKI) to chronic kidney disease (CKD) progression has become a life-threatening disease. However, an effective therapeuticstrategyis still needed. The pathophysiology of AKI-to-CKD progression involves chronic inflammation and renal fibrosis driven by macrophage activation, which is physiologically dependent on colony-stimulating factor-1 receptor (CSF-1R) signaling. In this study, we modulated macrophage infiltration through oral administration of the CSF-1R inhibitor GW2580 in an ischemia-reperfusion (I/R)-induced AKI model to evaluate its therapeutic effects on preventing the progression of AKI to CKD. We found that GW2580 induced a significant reduction in the number of macrophages in I/R-injured kidneys and attenuated I/R-induced renal injury and subsequent interstitial fibrosis. By flow cytometry, we observed that the reduced macrophages were primarily Ly6C+ inflammatory macrophages in the GW2580-treated kidneys, while there was no significant difference in the number and percentage of Ly6C-CX3CR1+ macrophages. We further found that these reduced macrophages also demonstrated some characteristics of M2-like macrophages, which have been generally regarded as profibrotic subtypes in chronic inflammation. These results indicate the existence of phenotypic and functional crossover between Ly6C+ and M2-like macrophages in I/R kidneys, which induces AKI worsening to CKD. In conclusion, therapeutic GW2580 treatment alleviates acute renal injury and subsequent fibrosis by reducing Ly6C+ M2-like macrophage infiltration in ischemia-induced AKI.
Collapse
Affiliation(s)
- Xuan Deng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Qian Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Yuxi Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Cheng Zhou
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Yi Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Wenhui Liao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| |
Collapse
|
21
|
AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 2020; 33:1171-1187. [PMID: 32651850 DOI: 10.1007/s40620-020-00793-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is an increasing health burden with high morbidity and mortality rates worldwide. AKI is a risk factor for chronic kidney disease (CKD) development and progression to end stage renal disease (ESRD). Rapid action is required to find treatment options for AKI, plus to anticipate the development of CKD and other complications. Therefore, it is essential to understand the pathophysiology of AKI to CKD transition. Over the last several years, research has revealed maladaptive repair to be an interplay of cell death, endothelial dysfunction, tubular epithelial cell senescence, inflammatory processes and more-terminating in fibrosis. Various pathological mechanisms have been discovered and reveal targets for potential interventions. Furthermore, there have been clinical efforts measures for AKI prevention and progression including the development of novel biomarkers and prediction models. In this review, we provide an overview of pathophysiological mechanisms involved in kidney fibrosis. Furthermore, we discuss research gaps and promising therapeutic approaches for AKI to CKD progression.
Collapse
|