1
|
Cheng J, Wang W, Yu T, Zhou X, Lian X, Cheng X, Wang L, Song L. Immune stimulation by inactivated Vibrio splendidus promotes the development and resistance of oyster Crassostrea gigas larvae. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110041. [PMID: 39586384 DOI: 10.1016/j.fsi.2024.110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The oyster Crassostrea gigas larvae in embryonic development stage have been suffering high mortality rate during hatching, which have seriously hindered the sustainable development of oyster seedling industry. This study explored the immune protection and developmental effects of priming with inactivated Vibrio splendidus in oyster larvae at middle umbo stage (10 d post fertilization, dpf). The results showed that the immune system of umbo larvae was activated after pre-immune stimulation with inactivated V. splendidus. The expressions of immune recognition receptors (CTL-3, Integrin β-1, TLR4), NF-kB signaling component (IKK), effector molecules (IL17-5, Defh2, HSP70) were significantly up-regulated, and the activities of antioxidant enzymes (superoxide dismutase and catalase), hydrolytic enzyme (lysozyme) also increased significantly. The proteins from the stimulated umbo larvae have obvious characteristics of agglutination and inhibition of V. splendidus growth. When the larvae at late umbo (18 dpf) or pediveliger stage (21 dpf) were challenged by live V. splendidus, much lower death rate was observed in the stimulation group compared to the control group. Simultaneously, the expressions of above immune related genes and the activities of antioxidant enzymes were all rapidly up-regulated in pediveliger larvae of immune stimulated group. Moreover, the significantly increased shell height and shell length as well as accelerated development rate, and higher settlement rate were revealed after the umbo larvae are stimulated by inactivated Vibrio splendidus. In summary, inactivated V. splendidus stimulation in oyster umbo larvae could activate their immune system, enhance their resistance against V. splendidus infection till to pediveliger stage, and promote their following growth and development. All the results provided a theoretical basis for solving poor disease resistance and high mortality of larvae in oyster seedling industry.
Collapse
Affiliation(s)
- Junlei Cheng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Tianqi Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaoxu Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xingye Lian
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xuemei Cheng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
2
|
Peng M, Cardoso JCR, Power DM. Evolution of chitin-synthase in molluscs and their response to ocean acidification. Mol Phylogenet Evol 2024; 201:108192. [PMID: 39255869 DOI: 10.1016/j.ympev.2024.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Chitin-synthase (CHS) is found in most eukaryotes and has a complex evolutionary history. Research into CHS has mainly been in the context of biomineralization of mollusc shells an area of high interest due to the consequences of ocean acidification. Exploration of CHS at the genomic level in molluscs, the evolution of isoforms, their tissue distribution, and response to environmental challenges are largely unknown. Exploiting the extensive molecular resources for mollusc species it is revealed that bivalves possess the largest number of CHS genes (12-22) reported to date in eukaryotes. The evolutionary tree constructed at the class level of molluscs indicates four CHS Type II isoforms (A-D) probably existed in the most recent common ancestor, and Type II-A (Type II-A-1/Type II-A-2) and Type II-C (Type II-C-1/Type II-C-2) underwent further differentiation. Non-specific loss of CHS isoforms occurred at the class level, and in some Type II (B-D groups) isoforms the myosin head domain, which is associated with shell formation, was not preserved and highly species-specific tissue expression of CHS isoforms occurred. These observations strongly support the idea of CHS functional diversification with shell biomineralization being one of several important functions. Analysis of transcriptome data uncovered the species-specific potential of CHS isoforms in shell formation and a species-specific response to ocean acidification (OA). The impact of OA was not CHS isoform-dependent although in Mytilus, Type I-B and Type II-D gene expression was down-regulated in both M. galloprovincialis and M. coruscus. In summary, during CHS evolution the gene family expanded in bivalves generating a large diversity of isoforms with different structures and with a ubiquitous tissue distribution suggesting that chitin is involved in many biological functions. These findings provide insight into CHS evolution in molluscs and lay the foundation for research into their function and response to environmental changes.
Collapse
Affiliation(s)
- Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Li Z, Yang M, Zhou C, Shi P, Hu P, Liang B, Jiang Q, Zhang L, Liu X, Lai C, Zhang T, Song H. Deciphering the molecular toolkit: regulatory elements governing shell biomineralization in marine molluscs. Integr Zool 2024. [PMID: 39030865 DOI: 10.1111/1749-4877.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The intricate process of shell biomineralization in marine molluscs is governed by a complex interplay of regulatory elements, encompassing secretomes, transporters, and noncoding RNA. This review delves into recent advancements in understanding these regulatory mechanisms, emphasizing their significance in elucidating the functions and evolutionary dynamics of the molluscan shell biomineralization process. Central to this intricate orchestration are secretomes with diverse functional domains, selectively exported to the extrapallial space, which directly regulate crystal growth and morphology. Transporters are crucial for substrate transportation in the calcification and maintenance of cellular homeostasis. Beyond proteins and transporters, noncoding RNA molecules are integral components influencing shell biomineralization. This review underscores the nonnegligible roles played by these genetic elements at the molecular level. To comprehend the complexity of biomineralization in mollusc, we explore the origin and evolutionary history of regulatory elements, primarily secretomes. While some elements have recently evolved, others are ancient genes that have been co-opted into the biomineralization toolkit. These elements undergo structural and functional evolution through rapidly evolving repetitive low-complexity domains and domain gain/loss/rearrangements, ultimately shaping a distinctive set of secretomes characterized by both conserved features and evolutionary innovations. This comprehensive review enhances our understanding of molluscan biomineralization at the molecular and genetic levels.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meijie Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zhou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pu Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengpeng Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingtian Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lili Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Changping Lai
- Lianyungang Blue Carbon Marine Technology Co., Lianyungang, China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Gao Y, Liu Z, Zhu T, Xin X, Jin Y, Wang L, Liu C, Song L. A bone morphogenetic protein regulates the shell formation of Crassostrea gigas under ocean acidification. Gene 2023; 884:147687. [PMID: 37541558 DOI: 10.1016/j.gene.2023.147687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are key factors controlling osteoblast differentiation, which have been proved to be involved in the hard tissue formation of marine mollusks. In the present study, a member of BMPs gene (CgBMP7) was identified from Pacific oyster Crassostrea gigas (C. gigas) with the aim to understand its possible role in the regulation of shell formation under ocean acidification (OA) conditions. The open reading frame (ORF) of CgBMP7 was of 1254 bp encoding a polypeptide of 417 amino acids. The deduced amino acid sequence of CgBMP7 was comprised of one signal peptide, one prodomain and one TGF-β domain, which shared 21.69%-61.10% identities with those from other species. The mRNA transcript of CgBMP7 was ubiquitously expressed in all the tested tissues of adult oysters with a higher expression level in mantle, notably highest in the middle fold (MF) of the three folds of mantle. The expression level of bone morphogenetic protein type I receptor (CgBMPR1B) mRNA was also highest in the MF and up-regulated dramatically post recombinant BMP7 protein (rCgBMP7) stimulation. After the blockage of BMPR1B with inhibitor LDN193189 (LDN), the mRNA expression level and phosphorylation level of CgSmad1/5/8 in mantle were decreased, and the mRNA expression levels of CgCaM and Cgengrailed-1 were down-regulated significantly. During the oysters were exposed to acidified seawater for weeks, the expression levels of CgBMP7, CgBMPR1B and CgSmad1/5/8 in the MF decreased significantly (p < 0.01) at the 4th week, and CgCaM and Cgengrailed-1 also exhibited the same variable expression patterns as CgBMP7. In addition, the growth of shell in the treatment group (pH 7.8) was slower than that in the control group (pH 8.1). These results collectively indicated that BMP7 was able to trigger the BMPR-Smad signaling pathway and involved in controlling the formation of oyster calcified shell under OA conditions.
Collapse
Affiliation(s)
- Yuqian Gao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Ting Zhu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaoyu Xin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China.
| |
Collapse
|
5
|
Schwaner C, Farhat S, Barbosa M, Boutet I, Tanguy A, Pales Espinosa E, Allam B. Molecular Features Associated with Resilience to Ocean Acidification in the Northern Quahog, Mercenaria mercenaria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:83-99. [PMID: 36417051 DOI: 10.1007/s10126-022-10183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The increasing concentration of CO2 in the atmosphere and resulting flux into the oceans will further exacerbate acidification already threatening coastal marine ecosystems. The subsequent alterations in carbonate chemistry can have deleterious impacts on many economically and ecologically important species including the northern quahog (Mercenaria mercenaria). The accelerated pace of these changes requires an understanding of how or if species and populations will be able to acclimate or adapt to such swift environmental alterations. Thus far, studies have primarily focused on the physiological effects of ocean acidification (OA) on M. mercenaria, including reductions in growth and survival. However, the molecular mechanisms of resilience to OA in this species remains unclear. Clam gametes were fertilized under normal pCO2 and reared under acidified (pH ~ 7.5, pCO2 ~ 1200 ppm) or control (pH ~ 7.9, pCO2 ~ 600 ppm) conditions before sampled at 2 days (larvae), 32 days (postsets), 5 and 10 months (juveniles) and submitted to RNA and DNA sequencing to evaluate alterations in gene expression and genetic variations. Results showed significant shift in gene expression profiles among clams reared in acidified conditions as compared to their respective controls. At 10 months of exposure, significant shifts in allele frequency of single nucleotide polymorphisms (SNPs) were identified. Both approaches highlighted genes coding for proteins related to shell formation, bicarbonate transport, cytoskeleton, immunity/stress, and metabolism, illustrating the role these pathways play in resilience to OA.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
6
|
Chandra Rajan K, Li Y, Dang X, Lim YK, Suzuki M, Lee SW, Vengatesen T. Directional fabrication and dissolution of larval and juvenile oyster shells under ocean acidification. Proc Biol Sci 2023; 290:20221216. [PMID: 36651043 PMCID: PMC9979777 DOI: 10.1098/rspb.2022.1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Biomineralization is one of the key biochemical processes in calcifying bivalve species such as oysters that is affected by ocean acidification (OA). Larval life stages of oysters are made of aragonite crystals whereas the adults are made of calcite and/or aragonite. Though both calcite and aragonite are crystal polymorphs of calcium carbonate, they have different mechanical properties and hence it is important to study the micro and nano structure of different life stages of oyster shells under OA to understand the mechanisms by which OA affects biomineralization ontogeny. Here, we have studied the larval and juvenile life stages of an economically and ecologically important estuarine oyster species, Crassostrea hongkongensis, under OA with focus over shell fabrication under OA (pHNBS 7.4). We also look at the effect of parental exposure to OA on larvae and juvenile microstructure. The micro and nanostructure characterization reveals directional fabrication of oyster shells, with more organized structure as biomineralization progresses. Under OA, both the larval and juvenile stages show directional dissolution, i.e. the earlier formed shell layers undergo dissolution at first, owing to longer exposure time. Despite dissolution, the micro and nanostructure of the shell remains unaffected under OA, irrespective of parental exposure history.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yang Li
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Xin Dang
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yong Kian Lim
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
- Centre for Aquaculture and Veterinary Science & School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Michio Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Seung Woo Lee
- Korea Institute of Geoscience and Mineral Resources, Daejeon, Republic of South Korea
| | - Thiyagarajan Vengatesen
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| |
Collapse
|
7
|
Zhang Y, Liu Z, Zong Y, Zheng Y, Li Y, Han Z, Wang L, Song L. The Increased Expression of an Engrailed to Sustain Shell Formation in Response to Ocean Acidification. Front Physiol 2020; 11:530435. [PMID: 33424616 PMCID: PMC7793958 DOI: 10.3389/fphys.2020.530435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Engrailed is a transcription factor required in numerous species for important developmental steps such as neurogenesis, segment formation, preblastoderm organization, and compartment formation. Recent study has proved that engrailed is also a key gene related to shell formation in marine bivalves. In the present study, the expression pattern of an engrailed gene (Cgengrailed-1) in Pacific oyster Crassostrea gigas under CO2-driven acidification was investigated to understand its possible role in the regulation of shell formation and adaptation to ocean acidification (OA). The open reading frame (ORF) of Cgengrailed-1 was obtained, which was of 690 bp encoding a polypeptide of 229 amino acids with a HOX domain. Phylogenetic analysis indicated that the deduced amino acid sequence of Cgengrailed-1 shared high homology with other engraileds from Drosophila melanogaster, Mizuhopecten yessoensi, and Crassostrea virginica. The mRNA transcripts of Cgengrailed-1 were constitutively expressed in various tissues with the highest expression levels detected in labial palp and mantle, which were 86.83-fold (p < 0.05) and 75.87-fold (p < 0.05) higher than that in hepatopancreas. The mRNA expression of Cgengrailed-1 in mantle decreased dramatically after moderate (pH 7.8) and severe (pH 7.4) acidification treatment (0.75- and 0.15-fold of that in control group, p < 0.05). The results of immunofluorescence assay demonstrated that the expression level of Cgengrailed-1 in the middle fold of mantle increased significantly upon moderate and severe acidification treatment. Moreover, after the oyster larvae received acidification treatment at trochophore stage, the mRNA expression levels of Cgengrailed-1 increased significantly in D-shape larvae stages, which was 3.11- (pH 7.8) and 4.39-fold (pH 7.4) of that in control group (p < 0.05). The whole-mount immunofluorescence assay showed that Cgengrailed-1 was mainly expressed on the margin of shell gland, and the periostracum in trochophore, early D-shape larvae and D-shape larvae in both control and acidification treatment groups, and the intensity of positive signals in early D-shape larvae and D-shape larvae increased dramatically under acidification treatment. These results collectively suggested that the expression of Cgengrailed-1 could be triggered by CO2-driven acidification treatment, which might contribute to induce the initial shell formation in oyster larvae and the formation of periostracum in adult oyster to adapt to the acidifying marine environment.
Collapse
Affiliation(s)
- Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yan Zheng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Zirong Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Huang S, Yi Q, Lian X, Xu S, Yang C, Sun J, Wang L, Song L. The involvement of ecdysone and ecdysone receptor in regulating the expression of antimicrobial peptides in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103757. [PMID: 32485180 DOI: 10.1016/j.dci.2020.103757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The ecdysone, 20-hydroxyecdysone (20E) and ecdysone receptor (EcR), are regarded as the key regulators of development, metamorphosis, and growth in arthropods. In the present study, the role of 20E and EsEcR in regulating the expression of antimicrobial peptides (AMPs) was investigated in Chinese mitten crab, Eriocheir sinensis. The concentration of 20E in plasma was significantly (p < 0.05) up-regulated from 3 h to 12 h after lipopolysaccharide (LPS) stimulation. The mRNA expression level of EsEcR-4 in hemocytes was significantly (p < 0.01) up-regulated from 6 h to 24 h after LPS stimulation, while no significant changes of EsEcR-2 and EsEcR-3 transcripts were observed. After 20E injection, EsEcR-4 expression level was significantly increased from 12 h to 48 h with the highest level at 24 h (4.34-fold compared to the control group, p < 0.01), and the mRNA expression levels of AMPs (EsALF-2, EsLYZ and EsCrus) in hemocytes were significantly increased from 6 h to 24 h with the peak level of 2.93-fold (p < 0.01), 2.33-fold (p < 0.01) and 2.75-fold (p < 0.01) at 12 h, respectively. After EsEcR-4 expression was interfered with specific dsRNA, a significant reduction of EsALF-2 (0.56-fold compared to the control group, p < 0.01), EsLYZ (0.27-fold, p < 0.01) and EsCrus (0.41-fold, p < 0.01) mRNA expression level was observed in dsEsEcR-4+LPS group at 12 h post LPS stimulation. Moreover, the mRNA expression levels of EsDorsal and EsJNK in hemocytes were significantly (p < 0.05) increased from 6 h to 24 h post 20E injection, and the phosphorylation of Dorsal and JNK in the hemocytes were significantly (p < 0.01) up-regulated at 3 h post 20E injection, while that in dsEsEcR-4+LPS group were significantly decreased after LPS stimulation compared to dsEsEGFP+LPS group. Taken together, these results suggested that 20E and EsEcR-4 play important roles in regulating the expression level of AMPs in the immune responses of E. sinensis by regulating the mRNA expression level and phosphorylation of Dorsal and JNK.
Collapse
Affiliation(s)
- Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xingye Lian
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Siqi Xu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
9
|
Liu Z, Zhang Y, Zhou Z, Zong Y, Zheng Y, Liu C, Kong N, Gao Q, Wang L, Song L. Metabolomic and transcriptomic profiling reveals the alteration of energy metabolism in oyster larvae during initial shell formation and under experimental ocean acidification. Sci Rep 2020; 10:6111. [PMID: 32273532 PMCID: PMC7145846 DOI: 10.1038/s41598-020-62963-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 11/09/2022] Open
Abstract
Marine bivalves secrete calcified shells to protect their soft bodies from predation and damages, which is of great importance for their survival, and for the safety of the coastal ecosystem. In recent years, larval shell formation of marine bivalves has been severely affected by ocean acidification (OA), and previous study indicated that OA might affect such process by disrupting endogenous energy metabolism. Developmental stages from trochophore to D-shape larvae are extremely important for initial shell formation in oyster since a calcified shell was formed to cover the chitin one. In the present study, metabolomic and transcriptomic approaches were employed to investigate the energy metabolism of oyster larvae during initial shell (prodissoconch I, PDI shell) formation and under experimental OA treatment. Totally 230 chemical compounds were identified from the present dataset, most of which were highly expressed in the “middle” stage (early D-shape larvae) which was critical for PDI shell formation since a calcified shell was formed to cover the chitin one. Several compounds such as glucose, glutarylcarnitine (C5), β-hydroxyisovaleroylcarnitine, 5-methylthioadenosine (MTA), myristoleate (14:1n5) and palmitoleate (16:1n7) were identified, which were involved in energy metabolic processes including amino acid oxidation, glycolysis, pentose phosphate pathway and fatty acid metabolism. In addition, mRNA expressions of genes related to protein metabolism, glycolysis, lipid degradation, calcium transport and organic matrix formation activities were significantly down-regulated upon experimental OA. These results collectively suggested that formation of the initial shell in oyster larvae required endogenous energy coming from amino acid oxidation, glycolysis, pentose phosphate pathway and fatty acid metabolism. These metabolic activities could be severely inhibited by experimental OA, which might alter the allocation of endogenous energy. Insufficient endogenous energy supply then suppressed the mobilization of calcium and resulted in a failure or delay in PDI shell formation.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yan Zheng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qiang Gao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China. .,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China. .,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China. .,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China. .,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China. .,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China. .,Dalian Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|