1
|
Baird A, White SA, Das R, Tatum N, Bisgaard EK. Whole body physiology model to simulate respiratory depression of fentanyl and associated naloxone reversal. COMMUNICATIONS MEDICINE 2024; 4:114. [PMID: 38866911 PMCID: PMC11169242 DOI: 10.1038/s43856-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Opioid use in the United States and abroad is an endemic part of society with yearly increases in overdose rates and deaths. In response, the use of the safe and effective reversal agent, naloxone, is being fielded and used by emergency medical technicians at a greater rate. There is evidence that repeated dosing of a naloxone nasal spray is becoming more common. Despite this we lack repeated dosing guidelines as a function of the amount of opiate the patient has taken. METHODS To measure repeat dosing guidelines, we construct a whole-body model of the pharmacokinetics and dynamics of an opiate, fentanyl on respiratory depression. We then construct a model of nasal deposition and administration of naloxone to investigate repeat dosing requirements for large overdose scenarios. We run a single patient through multiple goal directed resuscitation protocols and measure total naloxone administered. RESULTS Here we show that naloxone is highly effective at reversing the respiratory symptoms of the patient and recommend dosing requirements as a function of the fentanyl amount administered. We show that for increasing doses of fentanyl, naloxone requirements also increase. The rescue dose displays a nonlinear response to the initial opioid dose. This nonlinear response is largely logistic with three distinct phases: onset, rapid acceleration, and a plateau period for doses above 1.2 mg. CONCLUSIONS This paper investigates the total naloxone dose needed to properly reverse respiratory depression associated with fentanyl overdose. We show that the current guidelines for a rescue dose may be much lower than required.
Collapse
Affiliation(s)
- Austin Baird
- University of Washington Department of Surgery, Division of Healthcare Simulation Sciences, Seattle, WA, USA.
| | - Steven A White
- Applied Research Associated Southeast Division, Raleigh, NC, USA
| | - Rishi Das
- Applied Research Associated Southeast Division, Raleigh, NC, USA
| | - Nathan Tatum
- Applied Research Associated Southeast Division, Raleigh, NC, USA
| | - Erika K Bisgaard
- University of Washington Department of Surgery, Division of Trauma, Burn, and Critical Care Surgery, Seattle, WA, USA
| |
Collapse
|
2
|
Rovati L, Gary PJ, Cubro E, Dong Y, Kilickaya O, Schulte PJ, Zhong X, Wörster M, Kelm DJ, Gajic O, Niven AS, Lal A. Development and usability testing of a patient digital twin for critical care education: a mixed methods study. Front Med (Lausanne) 2024; 10:1336897. [PMID: 38274456 PMCID: PMC10808677 DOI: 10.3389/fmed.2023.1336897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background Digital twins are computerized patient replicas that allow clinical interventions testing in silico to minimize preventable patient harm. Our group has developed a novel application software utilizing a digital twin patient model based on electronic health record (EHR) variables to simulate clinical trajectories during the initial 6 h of critical illness. This study aimed to assess the usability, workload, and acceptance of the digital twin application as an educational tool in critical care. Methods A mixed methods study was conducted during seven user testing sessions of the digital twin application with thirty-five first-year internal medicine residents. Qualitative data were collected using a think-aloud and semi-structured interview format, while quantitative measurements included the System Usability Scale (SUS), NASA Task Load Index (NASA-TLX), and a short survey. Results Median SUS scores and NASA-TLX were 70 (IQR 62.5-82.5) and 29.2 (IQR 22.5-34.2), consistent with good software usability and low to moderate workload, respectively. Residents expressed interest in using the digital twin application for ICU rotations and identified five themes for software improvement: clinical fidelity, interface organization, learning experience, serious gaming, and implementation strategies. Conclusion A digital twin application based on EHR clinical variables showed good usability and high acceptance for critical care education.
Collapse
Affiliation(s)
- Lucrezia Rovati
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Phillip J. Gary
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Edin Cubro
- Department of Information Technology, Mayo Clinic, Rochester, MN, United States
| | - Yue Dong
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Oguz Kilickaya
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Phillip J. Schulte
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Xiang Zhong
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, United States
| | - Malin Wörster
- Center for Anesthesiology and Intensive Care Medicine, Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana J. Kelm
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ognjen Gajic
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Alexander S. Niven
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Jonas D, Kirby M, Schenkel AR, Dangelmayr G. Modeling of adaptive immunity uncovers disease tolerance mechanisms. J Theor Biol 2023; 568:111498. [PMID: 37100114 DOI: 10.1016/j.jtbi.2023.111498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/03/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
When an organism is challenged with a pathogen a cascade of events unfolds. The innate immune system rapidly mounts a preliminary nonspecific defense, while the acquired immune system slowly develops microbe-killing specialists. These responses cause inflammation, and along with the pathogen cause direct and indirect tissue damage, which anti-inflammatory mediators seek to temper. This interplay of systems is credited for maintaining homeostasis but may produce unexpected results such as disease tolerance. Tolerance is characterized by the persistence of pathogen and damage mitigation, where the relevant mechanisms are poorly understood. In this work we develop an ordinary differential equations model of the immune response to infection in order to identify key components in tolerance. Bifurcation analysis uncovers health, immune- and pathogen-mediated death clinical outcomes dependent on pathogen growth rate. We demonstrate that decreasing the inflammatory response to damage and increasing the strength of the immune system gives rise to a region in which limit cycles, or periodic solutions, are the only biological trajectories. We then describe areas of parameter space corresponding to disease tolerance by varying immune cell decay, pathogen removal, and lymphocyte proliferation rates.
Collapse
Affiliation(s)
- Daniel Jonas
- Colorado State University, Department of Mathematics, Fort Collins, CO, United States.
| | - Michael Kirby
- Colorado State University, Department of Mathematics, Fort Collins, CO, United States; Colorado State University, Department of Computer Science, Fort Collins, CO, United States
| | - Alan R Schenkel
- Colorado State University Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, United States
| | - Gerhard Dangelmayr
- Colorado State University, Department of Mathematics, Fort Collins, CO, United States
| |
Collapse
|
4
|
Schuurman AR, Sloot PMA, Wiersinga WJ, van der Poll T. Embracing complexity in sepsis. Crit Care 2023; 27:102. [PMID: 36906606 PMCID: PMC10007743 DOI: 10.1186/s13054-023-04374-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/19/2023] [Indexed: 03/13/2023] Open
Abstract
Sepsis involves the dynamic interplay between a pathogen, the host response, the failure of organ systems, medical interventions and a myriad of other factors. This together results in a complex, dynamic and dysregulated state that has remained ungovernable thus far. While it is generally accepted that sepsis is very complex indeed, the concepts, approaches and methods that are necessary to understand this complexity remain underappreciated. In this perspective we view sepsis through the lens of complexity theory. We describe the concepts that support viewing sepsis as a state of a highly complex, non-linear and spatio-dynamic system. We argue that methods from the field of complex systems are pivotal for a fuller understanding of sepsis, and we highlight the progress that has been made over the last decades in this respect. Still, despite these considerable advancements, methods like computational modelling and network-based analyses continue to fly under the general scientific radar. We discuss what barriers contribute to this disconnect, and what we can do to embrace complexity with regards to measurements, research approaches and clinical applications. Specifically, we advocate a focus on longitudinal, more continuous biological data collection in sepsis. Understanding the complexity of sepsis will require a huge multidisciplinary effort, in which computational approaches derived from complex systems science must be supported by, and integrated with, biological data. Such integration could finetune computational models, guide validation experiments, and identify key pathways that could be targeted to modulate the system to the benefit of the host. We offer an example for immunological predictive modelling, which may inform agile trials that could be adjusted throughout the trajectory of disease. Overall, we argue that we should expand our current mental frameworks of sepsis, and embrace nonlinear, system-based thinking in order to move the field forward.
Collapse
Affiliation(s)
- Alex R Schuurman
- Centre for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centres - Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Peter M A Sloot
- Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands
| | - W Joost Wiersinga
- Centre for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centres - Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Centre for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centres - Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Division of Infectious Diseases, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Trevena W, Lal A, Zec S, Cubro E, Zhong X, Dong Y, Gajic O. Modeling of Critically Ill Patient Pathways to Support Intensive Care Delivery. IEEE Robot Autom Lett 2022; 7:7287-7294. [DOI: 10.1109/lra.2022.3183253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Affiliation(s)
- William Trevena
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
| | | | | | | | - Xiang Zhong
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
6
|
Duh M, Skok K, Perc M, Markota A, Gosak M. Computational modeling of targeted temperature management in post-cardiac arrest patients. Biomech Model Mechanobiol 2022; 21:1407-1424. [PMID: 35763192 DOI: 10.1007/s10237-022-01598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Our core body temperature is held around [Formula: see text]C by an effective internal thermoregulatory system. However, various clinical scenarios have a more favorable outcome under external temperature regulation. Therapeutic hypothermia, for example, was found beneficial for the outcome of resuscitated cardiac arrest patients due to its protection against cerebral ischemia. Nonetheless, practice shows that outcomes of targeted temperature management vary considerably in dependence on individual tissue damage levels and differences in therapeutic strategies and protocols. Here, we address these differences in detail by means of computational modeling. We develop a multi-segment and multi-node thermoregulatory model that takes into account details related to specific post-cardiac arrest-related conditions, such as thermal imbalances due to sedation and anesthesia, increased metabolic rates induced by inflammatory processes, and various external cooling techniques. In our simulations, we track the evolution of the body temperature in patients subjected to post-resuscitation care, with particular emphasis on temperature regulation via an esophageal heat transfer device, on the examination of the alternative gastric cooling with ice slurry, and on how anesthesia and the level of inflammatory response influence thermal behavior. Our research provides a better understanding of the heat transfer processes and therapies used in post-cardiac arrest patients.
Collapse
Affiliation(s)
- Maja Duh
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Kristijan Skok
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.,Department of Pathology, General Hospital Graz II, Location West, Göstinger Straße 22, 8020, Graz, Austria
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404332, Taiwan.,Alma Mater Europaea, Slovenska ulica 17, 2000, Maribor, Slovenia.,Complexity Science Hub Vienna, Josefstädterstraße 39, 1080, Vienna, Austria
| | - Andrej Markota
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.,Medical Intensive Care Unit, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia. .,Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
7
|
Lonsdale H, Gray GM, Ahumada LM, Yates HM, Varughese A, Rehman MA. The Perioperative Human Digital Twin. Anesth Analg 2022; 134:885-892. [PMID: 35299215 DOI: 10.1213/ane.0000000000005916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hannah Lonsdale
- From the Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | | | - Luis M Ahumada
- Center for Pediatric Data Science and Analytics Methodology
| | - Hannah M Yates
- Department of Anesthesia and Pain Medicine, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | - Anna Varughese
- Department of Anesthesia and Pain Medicine, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | - Mohamed A Rehman
- Department of Anesthesia and Pain Medicine, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| |
Collapse
|
8
|
Ramirez-Zuniga I, Rubin JE, Swigon D, Redl H, Clermont G. A data-driven model of the role of energy in sepsis. J Theor Biol 2022; 533:110948. [PMID: 34757193 DOI: 10.1016/j.jtbi.2021.110948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/05/2021] [Accepted: 10/24/2021] [Indexed: 01/13/2023]
Abstract
Exposure to pathogens elicits a complex immune response involving multiple interdependent pathways. This response may mitigate detrimental effects and restore health but, if imbalanced, can lead to negative outcomes including sepsis. This complexity and need for balance pose a challenge for clinicians and have attracted attention from modelers seeking to apply computational tools to guide therapeutic approaches. In this work, we address a shortcoming of such past efforts by incorporating the dynamics of energy production and consumption into a computational model of the acute immune response. With this addition, we performed fits of model dynamics to data obtained from non-human primates exposed to Escherichia coli. Our analysis identifies parameters that may be crucial in determining survival outcomes and also highlights energy-related factors that modulate the immune response across baseline and altered glucose conditions.
Collapse
Affiliation(s)
- Ivan Ramirez-Zuniga
- University of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States
| | - Jonathan E Rubin
- University of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States
| | - David Swigon
- University of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Trauma Research Center, Vienna, Austria; Technical University Vienna, Vienna, Austria
| | - Gilles Clermont
- University of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States; University of Pittsburgh, Department of Critical Care Medicine, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Sutanto H, Lyon A. Predicting the neuro-cardio-haemodynamic outcomes of sepsis and its pharmacological interventions: Get to the future through numerical equations. J Physiol 2021; 599:2797-2799. [PMID: 33873248 PMCID: PMC9291562 DOI: 10.1113/jp281661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Henry Sutanto
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Dobreva A, Brady-Nicholls R, Larripa K, Puelz C, Mehlsen J, Olufsen MS. A physiological model of the inflammatory-thermal-pain-cardiovascular interactions during an endotoxin challenge. J Physiol 2021; 599:1459-1485. [PMID: 33450068 DOI: 10.1113/jp280883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Inflammation in response to bacterial endotoxin challenge impacts physiological functions, including cardiovascular, thermal and pain dynamics, although the mechanisms are poorly understood. We develop an innovative mathematical model incorporating interaction pathways between inflammation and physiological processes observed in response to an endotoxin challenge. We calibrate the model to individual data from 20 subjects in an experimental study of the human inflammatory and physiological responses to endotoxin, and we validate the model against human data from an independent study. Using the model to simulate patient responses to different treatment modalities reveals that a multimodal treatment combining several therapeutic strategies gives the best recovery outcome. ABSTRACT Uncontrolled, excessive production of pro-inflammatory mediators from immune cells and traumatized tissues can cause systemic inflammatory conditions such as sepsis, one of the ten leading causes of death in the USA, and one of the three leading causes of death in the intensive care unit. Understanding how inflammation affects physiological processes, including cardiovascular, thermal and pain dynamics, can improve a patient's chance of recovery after an inflammatory event caused by surgery or a severe infection. Although the effects of the autonomic response on the inflammatory system are well-known, knowledge about the reverse interaction is lacking. The present study develops a mathematical model analyzing the inflammatory system's interactions with thermal, pain and cardiovascular dynamics in response to a bacterial endotoxin challenge. We calibrate the model with individual data from an experimental study of the inflammatory and physiological responses to a one-time administration of endotoxin in 20 healthy young men and validate it against data from an independent endotoxin study. We use simulation to explore how various treatments help patients exposed to a sustained pathological input. The treatments explored include bacterial endotoxin adsorption, antipyretics and vasopressors, as well as combinations of these. Our findings suggest that the most favourable recovery outcome is achieved by a multimodal strategy, combining all three interventions to simultaneously remove endotoxin from the body and alleviate symptoms caused by the immune system as it fights the infection.
Collapse
Affiliation(s)
- Atanaska Dobreva
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA.,School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Renee Brady-Nicholls
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kamila Larripa
- Department of Mathematics, Humboldt State University, Arcata, CA, USA
| | - Charles Puelz
- Department of Pediatrics, Section of Cardiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Jesper Mehlsen
- Section for Surgical Pathophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
11
|
Baird A, Serio-Melvin M, Hackett M, Clover M, McDaniel M, Rowland M, Williams A, Wilson B. BurnCare tablet trainer to enhance burn injury care and treatment. BMC Emerg Med 2020; 20:84. [PMID: 33126858 PMCID: PMC7602345 DOI: 10.1186/s12873-020-00378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Applied Research Associates (ARA) and the United States Army Institute of Surgical Research (USAISR) have been developing a tablet-based simulation environment for burn wound assessment and burn shock resuscitation. This application aims to supplement the current gold standard in burn care education, the Advanced Burn Life Support (ABLS) curriculum. RESULTS Subject matter experts validate total body surface area (TBSA) identification and analysis and show that the visual fidelity of the tablet virtual patients is consistent with real life thermal injuries. We show this by noting that the error between their burn mapping and the actual patient burns was sufficiently less than that of a random sample population. Statistical analysis is used to confirm this hypothesis. In addition a full body physiology model developed for this project is detailed. Physiological results, and responses to standard care treatment, are detailed and validated. Future updates will include training modules that leverage this model. CONCLUSION We have created an accurate, whole-body model of burn TBSA training experience in Unreal 4 on a mobile platform, provided for free to the medical community. We hope to provide learners with more a realistic experience and with rapid feedback as they practice patient assessment, intervention, and reassessment.
Collapse
Affiliation(s)
- Austin Baird
- Applied Research Associates, Inc., 8537 Six Forks Rd, Raleigh, NC, 27615, USA.
| | - Maria Serio-Melvin
- USARMY Institute of Surgical Research, 3698 Chambers Pass Ste B JBSA ft. Sam, Houston, TX, 78234-7767, USA
| | - Matthew Hackett
- Army Research Laboratory, 12423 Research Pkwy, Orlando, FL, 32826, USA
| | - Marcia Clover
- Applied Research Associates, Inc., 8537 Six Forks Rd, Raleigh, NC, 27615, USA
| | - Matthew McDaniel
- Applied Research Associates, Inc., 8537 Six Forks Rd, Raleigh, NC, 27615, USA
| | - Michael Rowland
- USARMY Institute of Surgical Research, 3698 Chambers Pass Ste B JBSA ft. Sam, Houston, TX, 78234-7767, USA
| | - Alicia Williams
- USARMY Institute of Surgical Research, 3698 Chambers Pass Ste B JBSA ft. Sam, Houston, TX, 78234-7767, USA
| | - Bradly Wilson
- Applied Research Associates, Inc., 8537 Six Forks Rd, Raleigh, NC, 27615, USA
| |
Collapse
|