1
|
Schneider AE, Esbaugh AJ, Cupp AR, Suski CD. Silver carp experience metabolic and behavioral changes when exposed to water from the Chicago Area Waterway. Sci Rep 2024; 14:24689. [PMID: 39455602 PMCID: PMC11511862 DOI: 10.1038/s41598-024-71442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2024] [Indexed: 10/28/2024] Open
Abstract
One of the hallmarks of invasive species is their propensity to spread. Removing an invasive species after establishment is virtually impossible, and so considerable effort is invested in preventing the range expansion of invaders. Silver carp (Hypophthalmichthys molitrix) were discovered in the Mississippi River in 1981 and have spread throughout the basin. Despite their propensity to expand, the 'leading edge' in the Illinois River has stalled south of Chicago and has remained stable for a decade. Studies have indicated that contaminants in the Chicago Area Waterway System (CAWS) may be contributing to the lack of upstream movement, but this hypothesis has not been tested. This study used a laboratory setting to quantify the role of contaminants in deterring upstream movement of silver carp within the CAWS. For this, water was collected from the CAWS near the upstream edge of the distribution and transported to a fish culture facility. Silver carp and one native species were exposed to CAWS water, and activity, behavior, avoidance, and metabolic rates were quantified. Results showed that silver carp experience an elevated metabolic cost in CAWS water, along with reductions in swimming behavior. Together, results indicate a role for components of CAWS water at deterring range expansion.
Collapse
Affiliation(s)
- Amy E Schneider
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61801, USA
| | - A J Esbaugh
- Department of Marine Science, University of Texas Austin, Austin, TX, 78712, USA
| | - Aaron R Cupp
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - C D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61801, USA.
| |
Collapse
|
2
|
Shi M, Rupia EJ, Jiang P, Lu W. Switch from fight-flight to freeze-hide: The impacts of severe stress and brain serotonin on behavioral adaptations in flatfish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:891-909. [PMID: 38308734 DOI: 10.1007/s10695-024-01298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/01/2024] [Indexed: 02/05/2024]
Abstract
Animals often experience changes in their environment that can be perceived as stressful. Previous evidence indicates that different individuals may have distinct stress responses. The role of serotonin (5-HT) in stress adaptation is well established, but its relationship with different defense strategies and the persistence of physiological and behavioral responses in different individuals during repeated acute stress remain unclear. In this study, using olive flounder (Paralichthys olivaceus) as a model, we analyzed the relationship between boldness and neurotransmitter 5-HT activity. We found that 5-HT suppression with 5-HT synthesis inhibitor p-chlorophenylalanine (pCPA) and 5-HT receptor subtype 1A (5-HT1A) antagonist WAY-100635 increased their oxygen consumption rates and the boldness of shy individuals. We determined the metabolic and behavioral changes in bold and shy individuals to repeated acute stress. The results suggest that bold individuals switch on passive "energy-saving" personality by changing their defense behavior from "fight-flight" to "freeze-hide" during a threat encounter, which manifests high behavioral plasticity. Both behavioral types decreased their spontaneous activity levels, which were also strengthened by limiting metabolic rate. Interestingly, treatment with pCPA and WAY-100635 before stress procedure attenuated stress and increased the boldness across diverse behavioral types. This study provides the initial empirical evidence of how perception of stress impacts both individual defense behavior and personality in this species. These findings can enhance our comprehension of individual variability and behavioral plasticity in animals, thereby improving our ability to develop effective adaptive management strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
| | - Emmanuel J Rupia
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
- School of Biological Science, The University of Dodoma, Dodoma, Tanzania
| | - Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China.
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China.
| |
Collapse
|
3
|
Zeng J, Li J, Yang K, Yan J, Xu T, Lu W. Differential Branchial Response of Low Salinity Challenge Induced Prolactin in Active and Passive Coping Style Olive Flounder. Front Physiol 2022; 13:913233. [PMID: 35846010 PMCID: PMC9277578 DOI: 10.3389/fphys.2022.913233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Stress coping styles are very common in fish, and investigations into this area can greatly improve fish welfare and promote the sustainable development of aquaculture. Although most studies have focused on the behavioral and physiological differences of these fishes, the endocrine response of different coping styles fish when undergoing salinity challenge is still unclear. We examined the physiological response in olive flounder with active coping (AC) style and passive coping (PC) style after transferred from seawater (SW) to freshwater for 0, 2, 5, 8, and 14 days. The results showed that: 1) the plasma prolactin level of FW-acclimated AC flounder was substantially higher than that of FW-acclimated PC flounder at 5, 8, and 14 days, and the branchial gene expression of prolactin receptor (PRLR) in AC flounder was slightly higher than PC flounder after transfer. While there was no remarkable difference observed in cortisol (COR) levels between AC and PC flounder. After transfer, glucocorticoid receptor (GR) expression in AC flounder was significantly higher compared with PC flounder at 8 days. 2) Branchial NKA-IR ionocytes numbers were reduced in PC flounder after transfer, while ionocytes number remain stable in AC flounder. 3) The branchial stem cell transcription factor foxi1 gene expression of AC flounder was significantly higher than PC flounder at 2, 5, and 14 days after transfer, while branchial stem cell transcription factor p63 gene expression of FW-acclimated AC flounder was only substantially higher than that of PC flounder at 5 days. 4) As an apoptosis upstream initiator, the branchial gene expression of caspase-9 in PC flounder was considerably higher than in AC flounder after transfer at 8 days. This study revealed that olive flounder with active and passive coping styles have different endocrine coping strategies after facing the low-salinity challenge. AC flounder adopt an active endocrine strategy by increasing ionocyte differentiation and prolactin secretion significantly. In contrast, PC flounder employ a passive strategy of reducing ionocytes differentiation and retaining prolactin content at a low level to reduce branchial ionocytes number.
Collapse
Affiliation(s)
- Junjia Zeng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Jie Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Kun Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Jiayu Yan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Tianchun Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- *Correspondence: Weiqun Lu,
| |
Collapse
|
4
|
Perisho S, Hajnal A. Characterization of swine behavior and production using measurements collected via indoor positioning system. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2020.105164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Geffroy B, Alfonso S, Sadoul B, Blumstein DT. A World for Reactive Phenotypes. FRONTIERS IN CONSERVATION SCIENCE 2020. [DOI: 10.3389/fcosc.2020.611919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Humans currently occupy all continents and by doing so, modify the environment and create novel threats to many species; a phenomenon known as human-induced rapid environmental changes (HIREC). These growing anthropogenic disturbances represent major and relatively new environmental challenges for many animals, and invariably alter selection on traits adapted to previous environments. Those species that survive often have moved from their original habitat or modified their phenotype through plasticity or genetic evolution. Based on the most recent advances in this research area, we predict that wild individuals with highly plastic capacities, relatively high basal stress level, and that are generally shy—in other words, individuals displaying a reactive phenotype—should better cope with sudden and widespread HIREC than their counterparts' proactive phenotypes. If true, this selective response would have profound ecological and evolutionary consequences and can therefore impact conservation strategies, specifically with respect to managing the distribution and abundance of individuals and maintaining evolutionary potential. These insights may help design adaptive management strategies to maintain genetic variation in the context of HIREC.
Collapse
|