1
|
Dong Y, Gao X, Qiao C, Han M, Miao Z, Liu C, Yan L, Li J. Effects of Mixed Organic Acids and Essential Oils in Drinking Water on Growth Performance, Intestinal Digestive Capacity, and Immune Status in Broiler Chickens. Animals (Basel) 2024; 14:2160. [PMID: 39123686 PMCID: PMC11311025 DOI: 10.3390/ani14152160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
In order to evaluate the effects of acidifiers and essential oils in drinking water on growth, intestinal digestive capacity, and immune status in broilers, a total of 480, 1-day-old Arbore Acres broilers were randomly assigned to four treatments including normal tap water (Ctr) and tap water supplemented with acidifier I (ACI), acidifier I and essential oils (ACI+EO), and acidifier II (ACII). Both ACI+EO and ACII increased final body weight. The pH value of the crop and gizzards was reduced by ACI+EO, and ACII decreased the pH values of the proventriculus and gizzards (p < 0.05). Compared with control group, ACI, ACI+EO, ACII significantly enhanced lipase activity in jejunum but ACII decreased the level of serum total cholesterol and total triglyceride (p < 0.05). Compared with the control group, ACI+EO and ACII significantly increased the relative weight of the spleen, increased the level of serum IgA and IgM, and decreased E. coli in excreta, while ACII significantly decreased Salmonella in excreta (p <0.05). All treatments significantly increased Lactobacillus in excreta. In conclusion, ACI+EO improved immune status and ACII was effective in reducing Salmonella and promoting Lactobacillus, contributing to intestinal health.
Collapse
Affiliation(s)
- Yuanyang Dong
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| | - Xulong Gao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| | - Chenqi Qiao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| | - Miaomiao Han
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| | - Zhiqiang Miao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| | - Ci Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030800, China;
| | - Lei Yan
- New Hope Liuhe Co., Ltd., Beijing 100102, China;
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| |
Collapse
|
2
|
Evaluation of Liquid Organic Acids on the Performance, Chyme pH, Nutrient Utilization, and Gut Microbiota in Broilers under High Stocking Density. Animals (Basel) 2023; 13:ani13020257. [PMID: 36670796 PMCID: PMC9854823 DOI: 10.3390/ani13020257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
This study aimed to evaluate the efficacy of organic acids (OAs) in starter broilers and to investigate whether supplemental OAs could alleviate the high stocking density (HSD) stress condition in grower broilers. A total of 408 1-day-old Arbor Acres broilers were assigned into two groups without or with liquid OAs in the starter phase. In the grower phase, each group in the starter phase was divided into a normal stocking density and an HSD. The OA dose was 0.16% at the starter and grower phases. The results showed that at the starter phase, OAs decreased the chyme pH in gizzard and duodenum and increased the activities of chymotrypsin and α-amylase in the duodenal chyme (p < 0.05). In the grower phase, an HSD decreased the growth performance and the ether extract digestibility (p < 0.01). The supplementation of OAs decreased the chyme pH in the gizzard, proventriculus, and duodenum and increased the lipase and α-amylase activities (p < 0.05). The supplemental OAs increased the dry matter and total phosphorous digestibility and the contents of acetic acids, butyric acids, isovaleric acids, and valeric acids (p < 0.05). For cecal microbial compositions at the genus level, an HSD decreased the relative abundance of Blautia, Norank_f__norank_o__RF39, and Alistipes, while supplemental OAs increased the relative abundance of Norank_f__norank_o__RF39 (p < 0.05). In conclusion, although there were no interaction effects between OAs and stocking densities in the present study, it was clear that the supplementation of OAs has beneficial effects on the chyme pH, enzymes activities, and nutrient digestibility in broilers, while an HSD existed adverse effects on the growth performance, nutrient digestibility, and gut microbiota balance in grower broilers.
Collapse
|
3
|
Bio-Fermented Malic Acid Facilitates the Production of High-Quality Chicken via Enhancing Muscle Antioxidant Capacity of Broilers. Antioxidants (Basel) 2022; 11:antiox11122309. [PMID: 36552518 PMCID: PMC9774538 DOI: 10.3390/antiox11122309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Malic acid, an intermediate of the tricarboxylic acid (TCA) cycle, is a promising acidifier with strong antioxidant capacity. This study aimed to evaluate the effects of bio-fermented malic acid (BFMA) on promoting the body health, performance and meat quality of broilers. A total of 288 one-day-old Arbor Acres male broiler chicks were randomly divided into four treatments with six replicates in each. Every replicate had 12 chicks. Four experimental diets contained 0, 4, 8, and 12 g/kg BFMA, respectively. During the 42-day trial, mortality was recorded daily, feed intake and body weight of each replicate being recorded every week. Blood samples were collected on days 21 and 42 for chemical analysis. After slaughter at the age of 42 days, the carcass traits and meat quality of the broilers were measured, breast muscle samples were collected for the determination of antioxidant capacity, and cecal digesta were pretreated for microbiota analysis. Dietary BFMA significantly increased feed intake and daily gain, and decreased feed conversion ratio and death and culling ratio of the broilers at the earlier stage. The water-holding capacity of breast muscle indicated by the indexes of dripping loss and cooking loss was significantly increased by BFMA, especially at the addition level of 8 g/kg. Dietary BFMA significantly decreased the activity of superoxide dismutase and contents of immunoglobulin A and glutathione, and increased contents of immunoglobulin G and M in serum of the broilers. The contents of glutathione, inosinic acid, and total antioxidant capacity and the activities of glutathione-Px and superoxide dismutase were significantly increased by dietary BFMA, with the level of 8 g/kg best. The diversity of cecal microbiota of broilers was obviously altered by BFMA. In conclusion, as one of several acidifiers, addition of BFMA in diets could improve the performance and body health of broilers, probably by reinforcing immunity and perfecting cecal microbiota structure. As one of the intermediates of the TCA cycle, BFMA increases the water-holding capacity of breast muscle of broilers, probably through reducing lactate accumulates and enhancing antioxidant capacity.
Collapse
|
4
|
Abdelli N, Francisco Pérez J, Vilarrasa E, Melo-Duran D, Cabeza Luna I, Karimirad R, Solà-Oriol D. Microencapsulation Improved Fumaric Acid and Thymol Effects on Broiler Chickens Challenged With a Short-Term Fasting Period. Front Vet Sci 2021; 8:686143. [PMID: 34722691 PMCID: PMC8554117 DOI: 10.3389/fvets.2021.686143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The first objective of this study was to demonstrate the usefulness of the microencapsulation technique to protect fumaric acid and thymol, avoiding their early absorption and ensuring their slow release throughout the gastrointestinal tract (GIT). For this purpose, the release of a lipid matrix microencapsulated brilliant blue (BB) was assessed in vitro, using a simulated broiler intestinal fluid, and in vivo. In vitro results showed that more than 60% of BB color reached the lower intestine, including 26.6 and 29.7% in the jejunum and ileum, respectively. The second objective was to determine the effects of microencapsulated fumaric acid, thymol, and their mixture on the performance and gut health of broilers challenged with a short-term fasting period (FP). One-day-old male ROSS 308 chickens (n = 280) were randomly distributed into seven treatments, with 10 replicates of four birds each. Dietary treatments consisted of a basal diet as negative control (NC), which was then supplemented by either non-microencapsulated fumaric acid (0.9 g/kg), thymol (0.6 g/kg), or a mixture of them. The same additive doses were also administered in a microencapsulated form (1.5 and 3 g/kg for the fumaric acid and thymol, respectively). At day 21, chickens were subjected to a 16.5-h short-term FP to induce an increase in intestinal permeability. Growth performance was assessed weekly. At day 35, ileal tissue and cecal content were collected from one bird per replicate to analyze intestinal histomorphology and microbiota, respectively. No treatment effect was observed on growth performance from day 1 to 21 (p > 0.05). Microencapsulated fumaric acid, thymol, or their mixture improved the overall FCR (feed conversion ratio) and increased ileal villi height-to-crypt depth ratio (VH:CD) (p < 0.001) on day 35 of the experiment. The microencapsulated mixture of fumaric acid and thymol increased cecal abundance of Bacteroidetes, Bacillaceae, and Rikenellaceae, while decreasing that of Pseudomonadaceae. These results indicate that the microencapsulation technique used in the current study can be useful to protect fumaric acid and thymol, avoiding early absorption, ensure their slow release throughout the GIT, and improve their effects on fasted broiler chickens.
Collapse
Affiliation(s)
- Nedra Abdelli
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Francisco Pérez
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Diego Melo-Duran
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Razzagh Karimirad
- Department of Animal Science, Lorestan University, Khorramabad, Iran
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Xiang XD, Deng ZC, Wang YW, Sun H, Wang L, Han YM, Wu YY, Liu JG, Sun LH. Organic Acids Improve Growth Performance with Potential Regulation of Redox Homeostasis, Immunity, and Microflora in Intestines of Weaned Piglets. Antioxidants (Basel) 2021; 10:antiox10111665. [PMID: 34829536 PMCID: PMC8615128 DOI: 10.3390/antiox10111665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
The objective of this study is to evaluate the effects of organic acids on piglet growth performance and health status. A total of 360 weanling pigs (5.3 ± 0.6 kg) were randomly allotted to 3 treatment groups with 12 replicates of 10 pigs/pen. Piglets were fed the same basal diet and given either water (control) or water plus 2.0 L/Ton organic acid (OA) blends, such as OA1 or OA2, respectively, for 7 weeks. Compared to the control, OA1 and OA2 improved growth performance and/or reduced the piglets' diarrhea rate during the various periods and improved small intestinal morphology at days 14 and/or 49. OA1 and OA2 also increased serum CAT and SOD activities and/or T-AOC and, as expected, decreased MDA concentration. Moreover, at day 14 and/or day 49, OA1 and OA2 increased the jejunal mRNA levels of host defense peptides (PBD1, PBD2, NPG1, and NPG3) and tight junction genes (claudin-1) and decreased that of cytokines (IL-1β and IL-2). Additionally, the two acidifiers regulated the abundance of several cecum bacterial genera, including Blautia, Bulleidia, Coprococcus, Dorea, Eubacterium, Subdoligranulum, and YRC2. In conclusion, both of the organic acid blends improved piglet growth performance and health status, potentially by regulating intestinal redox homeostasis, immunity, and microflora.
Collapse
Affiliation(s)
- Xin-Dong Xiang
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.-D.X.); (Z.-C.D.); (H.S.)
| | - Zhang-Chao Deng
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.-D.X.); (Z.-C.D.); (H.S.)
| | - You-Wei Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, Shiyan 442000, China;
| | - Hua Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.-D.X.); (Z.-C.D.); (H.S.)
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangzhou 510640, China
- Correspondence: (L.W.); (J.-G.L.); (L.-H.S.)
| | - Yan-Ming Han
- Trouw Nutrition, 773811 Amersfoort, The Netherlands; (Y.-M.H.); (Y.-Y.W.)
| | - Yuan-Yuan Wu
- Trouw Nutrition, 773811 Amersfoort, The Netherlands; (Y.-M.H.); (Y.-Y.W.)
| | - Jian-Gao Liu
- Guangzhou Liuhe Feed Company Limited, Guangzhou 511400, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu 610110, China
- Correspondence: (L.W.); (J.-G.L.); (L.-H.S.)
| | - Lv-Hui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.-D.X.); (Z.-C.D.); (H.S.)
- Correspondence: (L.W.); (J.-G.L.); (L.-H.S.)
| |
Collapse
|
6
|
Mustafa A, Bai S, Zeng Q, Ding X, Wang J, Xuan Y, Su Z, Zhang K. Effect of organic acids on growth performance, intestinal morphology, and immunity of broiler chickens with and without coccidial challenge. AMB Express 2021; 11:140. [PMID: 34669066 PMCID: PMC8528927 DOI: 10.1186/s13568-021-01299-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
A total of 360-day-old broiler chicks were allocated into six groups in 2 (Coccidial challenge or not) × 3 (dietary treatments) factorial design. Three dietary treatments including: basic diet, basic diet plus organic acids (OAs) in drinking water, and basic diet plus OAs in the feed with and without coccidial challenge. The OAs in water or feed improved (P < 0.01) average body weight (ABW), average body weight gain (ABWG), and feed conversion ratio (FCR) as compared with the control diet during starter, grower, and whole experimental period. Coccidial challenge decreased BW, ABWG, and average feed intake (AFI), as well as resulted in poor FCR during the starter and whole experimental period (P < 0.05). Though there was no interaction between OAs supplementation and coccidial challenge, the OAs supplementation improved the overall performance with and without coccidial challenge birds on 21 d and 35 d. IgG was found higher (P = 0.03) in broilers fed OAs in feed without the coccidial challenge group. On 18 d, OAs supplementation in feed increased TNF-γ (P = 0.006), whereas the coccidial challenge decreases TNF-γ (P = 0.01) and IL-10 (P = < .0001), and increases IgM (P = 0.03), IgG (P = 0.04) and IgA (P = 0.02). On 29 d, the coccidial challenge increases IgM and IgA. On 18 d, jejunal lesion score was found significantly higher in the coccidial challenged group as compared to OAs supplementation with coccidial challenged groups on 18 d (P < 0.0001) and 29 d (P = 0.03). Crypt depth was higher, and Villus-height to Crypt depth ratio was lower in the coccidial challenge group on 18 and 29 d. The Goblet cells were found higher in the non-coccidial challenge on 18 d. After 18 d, 16S rDNA gene sequence analysis of ileal chyme has shown that coccidial challenge decreases Lactobacillus_reuteri species as compared to the non-challenged group (P = 0.02). After 29, Cyanobacteria abundance reduced (P = 0.014) in the challenged group than the non-challenged group at the phylum level. At the genus level, Lactobacillus (P = 0.036) and unidentified Cyanobacteria (P = 0.01) were found higher in the non-challenged group than the coccidial challenge group. The results indicate that the OAs supplementation showed improved responses in a pattern similar to the non-challenged control group by neutralizing the negative effects of the coccidial challenge.
Collapse
|
7
|
Chen F, Zhang H, Du E, Fan Q, Zhao N, Jin F, Zhang W, Guo W, Huang S, Wei J. Supplemental magnolol or honokiol attenuates adverse effects in broilers infected with Salmonella pullorum by modulating mucosal gene expression and the gut microbiota. J Anim Sci Biotechnol 2021; 12:87. [PMID: 34365974 PMCID: PMC8351427 DOI: 10.1186/s40104-021-00611-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Salmonella pullorum is one of the most harmful pathogens to avian species. Magnolol and honokiol, natural compounds extracted from Magnolia officinalis, exerts anti-inflammatory, anti-oxidant and antibacterial activities. This study was conducted to evaluate the effects of dietary supplemental magnolol and honokiol in broilers infected with S. pullorum. A total of 360 one-day-old broilers were selected and randomly divided into four groups with six replicates: the negative control group (CTL), S. pullorum-infected group (SP), and the S. pullorum-infected group supplemented with 300 mg/kg honokiol (SPH) or magnolol (SPM). RESULTS The results showed that challenging with S. pullorum impaired growth performance in broilers, as indicated by the observed decreases in body weight (P < 0.05) and average daily gains (P < 0.05), along with increased spleen (P < 0.01) and bursa of Fabricus weights (P < 0.05), serum globulin contents, and the decreased intestine villus height and villus/crypt ratios (P < 0.05). Notably, supplemental magnolol and honokiol attenuated these adverse changes, and the effects of magnolol were better than those of honokiol. Therefore, we performed RNA-Seq in ileum tissues and 16S rRNA gene sequencing of ileum bacteria. Our analysis revealed that magnolol increased the α-diversity (observed species, Chao1, ACE, and PD whole tree) and β-diversity of the ileum bacteria (P < 0.05). In addition, magnolol supplementation increased the abundance of Lactobacillus (P < 0.01) and decreased unidentified Cyanobacteria (P < 0.05) both at d 14 and d 21. Further study confirmed that differentially expressed genes induced by magnolol and honokiol supplementation enriched in cytokine-cytokine receptor interactions, in the intestinal immune network for IgA production, and in the cell adhesion molecule pathways. CONCLUSIONS Supplemental magnolol and honokiol alleviated S. pullorum-induced impairments in growth performance, and the effect of magnolol was better than that of honokiol, which could be partially due to magnolol's ability to improve the intestinal microbial and mucosal barrier.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Wuhan, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Encun Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Qiwen Fan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Na Zhao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Feng Jin
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanzheng Guo
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaowen Huang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
8
|
Qi R, Zhang Z, Wang J, Qiu X, Wang Q, Yang F, Huang J, Liu Z. Introduction of Colonic and Fecal Microbiota From an Adult Pig Differently Affects the Growth, Gut Health, Intestinal Microbiota and Blood Metabolome of Newborn Piglets. Front Microbiol 2021; 12:623673. [PMID: 33613491 PMCID: PMC7889522 DOI: 10.3389/fmicb.2021.623673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Microbiota transplantation is a rapid and effective method for changing and reshaping the intestinal microbiota and metabolic profile in humans and animals. This study compared the different influences of the introduction of fecal microbes and colonic microbes from a fat, adult pig in newborn pigs. Both colonic microbiota transplantation (CMT) and fecal microbiota transplantation (FMT) promoted growth and improved gut functions in suckling pigs up to weaning. FMT was more beneficial for body weight gain and body fat deposition in piglets, while CMT was more beneficial for intestinal health and mucosal immunity. 16S rDNA sequence analysis indicated that both CMT and FMT significantly increased the abundances of beneficial or functional bacteria, such as Lactobacillus and Prevotella_2 genera, in the piglets, and reduced the abundances of harmful bacteria, such as Escherichia-Shigella. Blood metabolome analysis showed that transplantation, especially FMT, enhanced lipid metabolism in piglets. In addition, while CMT also changed amino acid metabolism and increased anti-inflammatory metabolites such as 3-indoleacetic acid and 3-indolepropionic acid in piglets, FMT did not. Of note, FMT damaged the intestinal barrier of piglets to a certain extent and increased the levels of inflammatory factors in the blood that are potentially harmful to the health of pigs. Taken together, these results suggested that intestinal and fecal microbiota transplantations elicited similar but different physiological effects on young animals, so the application of microbiota transplantation in animal production requires the careful selection and evaluation of source bacteria.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Chongqing, China
| | - Zhuo Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| |
Collapse
|
9
|
Dai D, Qiu K, Zhang HJ, Wu SG, Han YM, Wu YY, Qi GH, Wang J. Organic Acids as Alternatives for Antibiotic Growth Promoters Alter the Intestinal Structure and Microbiota and Improve the Growth Performance in Broilers. Front Microbiol 2021; 11:618144. [PMID: 33519778 PMCID: PMC7840962 DOI: 10.3389/fmicb.2020.618144] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the effects of organic acids (OA) as alternatives for antibiotic growth promoters (AGP) on growth performance, intestinal structure, as well as intestinal microbial composition and short-chain fatty acids (SCFAs) profiles in broilers. A total of 336 newly hatched male Arbor Acres broiler chicks were randomly allocated into 3 dietary treatments including the basal diet [negative control (NC)], the basal diet supplemented with 5 mg/kg flavomycin, and the basal diet supplemented with OA feed additives. Each treatment had eight replicates with 14 birds each. The results showed that AGP and OA promoted growth during day 22–42 compared with the NC group (P < 0.05). OA significantly increased the jejunal goblet cell density and ileal villus height on day 42 compared with the NC group (P < 0.05). Meanwhile, OA up-regulated the mRNA expression of jejunal barrier genes (Claudin-3 and ZO-1) relative to the NC group (P < 0.05). Significant changes of microbiota induced by the OA were also found on day 42 (P < 0.05). Several SCFAs-producing bacteria like Ruminococcaceae, Christensenellaceae, and Peptococcaceae affiliated to the order Clostridiales were identified as biomarkers of the OA group. Higher concentrations of SCFAs including formic acid and butyric acid were observed in the cecum of OA group (P < 0.05). Simultaneously, the abundance of family Ruminococcaceae showed highly positive correlations with the body weight and mRNA level of ZO-1 on day 42 (P < 0.05). However, AGP supplementation had the higher mRNA expression of Claudin-2, lower goblet cell density of jejunum, and decreased Firmicutes to Bacteroidetes ratio, suggesting that AGP might have a negative impact on intestinal immune and microbiota homeostasis. In conclusion, the OA improved growth performance, intestinal morphology and barrier function in broilers, which might be attributed to the changes of intestinal microbiota, particularly the enrichment of SCFAs-producing bacteria, providing a more homeostatic and healthy intestinal microecology.
Collapse
Affiliation(s)
- Dong Dai
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Ming Han
- Trouw Nutrition Research & Development Centers, Amersfoort, Netherlands
| | - Yuan-Yuan Wu
- Trouw Nutrition Research & Development Centers, Amersfoort, Netherlands
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|