1
|
Ahmad M, Hu C, Liu M, Zhang H, Shah SAUR, Nabi G, Hao Y, Chen L. Cytotoxicity and mechanisms of perfluorobutane sulfonate (PFBS) in umbilical cord fibroblast cells of Yangtze finless porpoise. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107098. [PMID: 39298911 DOI: 10.1016/j.aquatox.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Yangtze finless porpoises (YFP) accumulate high levels of per- and polyfluoroalkyl substances (PFASs). However, the health impacts of PFASs to YFP are still unknown because it is technically and ethically unfeasible to use the critically endangered YFP in toxicological exposures. To uncover the potential toxicities of PFASs to YFP, this study exposed a YFP umbilical cord fibroblast cell line to perfluorobutane sulfonate (PFBS), an emerging PFASs pollutant in the aquatic environments. After exposure, the cytotoxicity and mechanisms of PFBS were explored. Our preliminary experiments found that PFBS compromised the cell viability in a concentration and duration dependent manner. In an exposure of 48-h duration, the maximum no observed effect concentration (NOEC) of PFBS was determined to be 400 µM. High-throughput proteomics were then conducted to identify the differentially expressed proteins in YFP cells exposed to 400 µM PFBS for 48 h. The results found that PFBS exposure significantly perturbed the proteome fingerprints of YFP umbilical cord fibroblast cells. Functional annotation of differential proteins showed that PFBS had the potential to impair a variety of biological processes associated with the immunity, oxidative stress, metabolism, and proteolysis. Consistently, the intracellular levels of reactive oxygen species (ROS) and proinflammatory cytokine IL-1β were significantly increased by PFBS in YFP umbilical cord fibroblast cells. Overall, this study highlights the toxic effects of emerging PFASs on YFP and provides reference data to evaluate the health risks of aquatic pollution under the context of national YFP protection. To our knowledge, this is the first omics study using YFP umbilical cord fibroblast cells in ecotoxicology of PFASs, which is applicable to various cetacean species and pollutants.
Collapse
Affiliation(s)
- Maaz Ahmad
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Mengyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haobo Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Syed Ata Ur Rahman Shah
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ghulam Nabi
- Department of Zoology, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Yujiang Hao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Liu W, Yin D, Li Z, Zhu X, Zhang S, Zhang P, Lin D, Hua Z, Cao Z, Zhang H, Zhang J, Ying C, Xu P, Dong G, Liu K. Comparative Blood Transcriptome Analysis of Semi-Natural and Controlled Environment Populations of Yangtze Finless Porpoise. Animals (Basel) 2024; 14:199. [PMID: 38254368 PMCID: PMC10812818 DOI: 10.3390/ani14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis) living in different environments display significant differences in behavior and physiology. To compare and analyze gene expression differences between an ex situ population and a controlled environment population of the Yangtze finless porpoise, we sequenced the transcriptome of blood tissues living in a semi-natural reserve and an artificial facility, respectively. We identified 6860 differentially expressed genes (DEGs), of which 6603 were up-regulated and 257 were down-regulated in the controlled environment vs ex situ comparison. GO and KEGG enrichment analysis showed that the up-regulated genes in the controlled environment population were significantly associated with glucose metabolism, amino acid metabolism, and the nervous system, while those up-regulated in the ex situ population were significantly associated with energy supply and biosynthesis. Further analysis showed that metabolic and hearing-related genes were significantly affected by changes in the environment, and key metabolic genes such as HK, PFK, IDH, and GLS and key hearing-related genes such as OTOA, OTOF, SLC38A1, and GABBR2 were identified. These results suggest that the controlled environment population may have enhanced glucose metabolic ability via activation of glycolysis/gluconeogenesis, the TCA cycle, and inositol phosphate metabolism, while the ex situ population may meet higher energy requirements via enhancement of the amino acid metabolism of the liver and muscle and oxidative phosphorylation. Additionally, the acoustic behavior and auditory-related genes of Yangtze finless porpoise may show responsive changes and differential expression under different environment conditions, and thus the auditory sensitivity may also show corresponding adaptive characteristics. This study provides a new perspective for further exploration of the responsive changes of the two populations to various environments and provides a theoretical reference for further improvements in conservation practices for the Yangtze finless porpoise.
Collapse
Affiliation(s)
- Wang Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Denghua Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
| | - Zhanwei Li
- Zhuhai Chimelong Investment & Development Co., Ltd., Zhuhai 519000, China; (Z.L.); (P.Z.)
| | - Xiaoyan Zhu
- Anqing Aquatic Technology Promotion Center Station, Anqing 246000, China; (X.Z.); (S.Z.)
| | - Sigang Zhang
- Anqing Aquatic Technology Promotion Center Station, Anqing 246000, China; (X.Z.); (S.Z.)
| | - Peng Zhang
- Zhuhai Chimelong Investment & Development Co., Ltd., Zhuhai 519000, China; (Z.L.); (P.Z.)
| | - Danqing Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
| | - Zhong Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
| | - Zhichen Cao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Z.C.); (H.Z.)
| | - Han Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Z.C.); (H.Z.)
| | - Jialu Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
| | - Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Guixin Dong
- Guangdong South China Rare Wild Animal Species Conservation Center, Zhuhai 519031, China
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Z.C.); (H.Z.)
| |
Collapse
|
3
|
Wang Z, Tang B, Wang K, Hao Y, Yang F. Accumulation and risk prioritization of psychoactive substances in the critically endangered Yangtze finless porpoise. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130002. [PMID: 36152546 DOI: 10.1016/j.jhazmat.2022.130002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Psychoactive substances have been identified as a kind of emerging contaminants in aquatic environment and pose potential adverse effects on aquatic animals. Yangtze finless porpoise, a critically endangered species in China, is also facing the threat of psychoactive substances. In this study, the accumulation characteristics and risk prioritization of psychoactive substances were investigated in Yangtze finless porpoise collected from Poyang Lake (PYL) and Tian-E-Zhou Oxbow (TZO) in Yangtze River basin. The levels of psychoactive substances were detected in the range of below method detection limits (MDLs) to 98.4 ng/mL in the serum of Yangtze finless porpoise. Codeine (COD) and methamphetamine were identified as the major substances due to the highest residual levels with a median concentration of 0.72 ng/mL and 0.33 ng/mL, respectively. The total concentrations of psychoactive substances in the porpoise collected from TZO was significantly higher than those from PYL. Risk analysis based on effect ratio derived from the ratio of steady-state psychoactive substance serum concentration in the porpoise and human therapeutic plasma concentration revealed that COD was the substance with the highest risk among the psychoactive substances detected, followed by lysergic acid diethylamide (LSD), morphine, alprazolam (ALPZ) and lormetazepam. Location-specific risk prioritization of psychoactive substances found that the top 3 substances are LSD, lorazepam (LORZ) and ALPZ in PYL, and COD, LSD and LORZ in TZO. The results disclose the accumulation of psychoactive substances in Yangtze finless porpoise and suggest that the potential adverse effects should be concerned.
Collapse
Affiliation(s)
- Zeyuan Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Bin Tang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Bone marrow mesenchymal stem cells facilitate diabetic wound healing through the restoration of epidermal cell autophagy via the HIF-1α/TGF-β1/SMAD pathway. Stem Cell Res Ther 2022; 13:314. [PMID: 35841007 PMCID: PMC9284495 DOI: 10.1186/s13287-022-02996-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The biological activity and regenerative medicine of bone marrow mesenchymal stem cells (BMSCs) have been focal topics in the broad fields of diabetic wound repair. However, the molecular mechanisms are still largely elusive for other cellular processes that are regulated during BMSC treatment. Our previous studies have shown that hypoxia is not only a typical pathological phenomenon of wounds but also exerts a vital regulatory effect on cellular bioactivity. In this study, the beneficial effects of hypoxic BMSCs on the cellular behaviors of epidermal cells and diabetic wound healing were investigated. METHOD The viability and secretion ability of hypoxic BMSCs were detected. The autophagy, proliferation and migration of HaCaT cells cultured with hypoxic BMSCs-derived conditioned medium were assessed by estimating the expression of autophagy-related proteins, MTS, EdU proliferation and scratch assays. And the role of the SMAD signaling pathway during hypoxic BMSC-evoked HaCaT cell autophagy was explored through a series of in vitro gain- and loss-of-function experiments. Finally, the therapeutic effects of hypoxic BMSCs were evaluated using full-thickness cutaneous diabetic wound model. RESULTS First, we demonstrated that hypoxic conditions intensify HIF-1α-mediated TGF-β1 secretion by BMSCs. Then, the further data revealed that BMSC-derived TGF-β1 was responsible for the activation of epidermal cell autophagy, which contributed to the induction of epidermal cell proliferation and migration. Here, the SMAD signaling pathway was identified as downstream of BMSC-derived TGF-β1 to regulate HaCaT cell autophagy. Moreover, the administration of BMSCs to diabetic wounds increased epidermal autophagy and the rate of re-epithelialization, leading to accelerated healing, and these effects were significantly attenuated, accompanied by the downregulation of Smad2 phosphorylation levels due to TGF-β1 interference in BMSCs. CONCLUSION In this report, we present evidence that uncovers a previously unidentified role of hypoxic BMSCs in regulating epidermal cell autophagy. The findings demonstrate that BMSC-based treatment by restoring epidermal cell autophagy could be an attractive therapeutic strategy for diabetic wounds and that the process is mediated by the HIF-1α/TGF-β1/SMAD pathway.
Collapse
|
5
|
Functional Diversity of the Lepidopteran ATP-Binding Cassette Transporters. J Mol Evol 2022; 90:258-270. [PMID: 35513601 DOI: 10.1007/s00239-022-10056-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
The ATP-binding cassette (ABC) transporter gene family is ubiquitous in the living world. ABC proteins bind and hydrolyze ATP to transport a myriad of molecules across various lipid-containing membrane systems. They have been studied well in plants for transport of a variety of compounds and particularly, in vertebrates due to their direct involvement in resistance mechanisms against several toxic molecules/metabolites. ABC transporters in insects are found within large multigene families involved in the efflux of chemical insecticides and toxic/undesired metabolites originating from food and endogenous metabolism. This review deals with ABC transporter subfamilies of few agronomically important Lepidopteran pests. The transcriptional dynamics and regulation of ABC transporters during insect development emphasizes their functional diversity against insecticides, Cry toxins, and plant specialized metabolites. To generate insights about molecular function and physiological roles of ABCs, functional and structural characterization is necessary. Also, expansion and divergence of ABC transporter gene subfamilies in Lepidopteran insects needs more systematic investigation. We anticipate that newer methods of insect control in agriculture can benefit from an understanding of ABC transporter interactions with a vast range of natural specialized molecules and synthetic compounds.
Collapse
|
6
|
Blood Transcriptome Analysis Reveals Gene Expression Differences between Yangtze Finless Porpoises from Two Habitats: Natural and Ex Situ Protected Waters. FISHES 2022. [DOI: 10.3390/fishes7030096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) is a critically endangered small odontocete species, mainly distributed in the middle and lower reaches of the Yangtze River, Poyang Lake, and Dongting Lake. Under the influence of human activities, many factors are threatening the survival and reproduction of YFPs in their natural habitat. Ex situ conservation is of great significance to strengthen the rescuing conservation of YFPs by providing suitable alternative habitats and promoting the reproduction and growth of the ex situ population. To reveal the differences in gene expression of YFPs in natural and ex situ protected waters, and to investigate the effects of environmental factors on YFPs and their mechanisms, we performed transcriptome sequencing for blood tissues of YFPs collected from natural waters and ex situ protected waters. Using RNA-seq we identified 4613 differentially expressed genes (DEGs), of which 4485 were up-regulated and 128 were down-regulated in the natural population. GO analysis showed that DEGs were significantly enriched in entries related to binding, catalytic activity, and biological regulation; KEGG analysis showed that DEGs were enriched mainly in signal transduction, endocrine system, immune system, and sensory system-related pathways. Further analysis revealed that water pollution in natural waters may affect the hormone secretion of YFPs by altering the expression pattern of endocrine genes, thus interfering with normal endocrine activities; noise pollution may induce oxidative stress and inflammatory responses in YFPs, thus impairing the auditory function of YFPs. This study provides a new perspective for further research on the effect of habitat conditions on the YFPs and suggests that improving the habitat environment may help in the conservation of YFPs.
Collapse
|
7
|
Nabi G, Robeck TR, Yujiang H, Tang B, Zheng J, Wang K, Wang D. Circulating concentrations of thyroid hormones and cortisol in wild and semi-natural Yangtze finless porpoise ( Neophocaena asiaeorientalis). CONSERVATION PHYSIOLOGY 2021; 9:coab034. [PMID: 35559363 PMCID: PMC8120013 DOI: 10.1093/conphys/coab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/15/2021] [Accepted: 04/21/2021] [Indexed: 06/15/2023]
Abstract
Our understanding about how environmental and biological variables may influence circulating thyroid and adrenal hormones in free-ranging cetaceans is limited. As such, we used liquid chromatography-mass spectrometry to determine concentrations of circulating cortisol and thyroid hormones (THs; tT3, tT4) in 132 Yangtze finless porpoises (YFPs) located in Poyang Lake, (PL, n = 92) and Tian-E-Zhou Oxbow reserve (TZO, n = 40). For overall hormone comparisons, animals were partitioned by age [juvenile and adult (male and non-pregnant, non-lactating female)], sex, season (winter or spring) and geographical location. Geographically, during winter, circulating THs were significantly higher in the PL versus TZO population. Seasonally, within PL, THs were significantly higher in the winter versus spring season. Animals were further binned into groups as follows: juvenile male (JM) and juvenile female (JF), adult male (AM), non-pregnant adult female, pregnant female and non-pregnant lactating female. Intra-group comparisons between locations showed a significant increase in JM THs at PL. Significant increases in THs during winter compared to spring were detected between JM and JF groups. Mean comparisons of cortisol within and between locations for each group identified a significant increase for TZO AM versus TZO pregnant female and JM and JF. Seasonally, in PL, only JF has significantly higher cortisol in winter versus spring. Finally, we established reference values of THs and cortisol for YFPs in different geographical locations. These references are important baselines from which the effects of environmental and biological variables on THs and cortisol may be evaluated.
Collapse
Affiliation(s)
- Ghulam Nabi
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | | | - Hao Yujiang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bin Tang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsong Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kexiong Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|