1
|
Marsh PL, Moore EE, Moore HB, Bunch CM, Aboukhaled M, Condon SM, Al-Fadhl MD, Thomas SJ, Larson JR, Bower CW, Miller CB, Pearson ML, Twilling CL, Reser DW, Kim GS, Troyer BM, Yeager D, Thomas SG, Srikureja DP, Patel SS, Añón SL, Thomas AV, Miller JB, Van Ryn DE, Pamulapati SV, Zimmerman D, Wells B, Martin PL, Seder CW, Aversa JG, Greene RB, March RJ, Kwaan HC, Fulkerson DH, Vande Lune SA, Mollnes TE, Nielsen EW, Storm BS, Walsh MM. Iatrogenic air embolism: pathoanatomy, thromboinflammation, endotheliopathy, and therapies. Front Immunol 2023; 14:1230049. [PMID: 37795086 PMCID: PMC10546929 DOI: 10.3389/fimmu.2023.1230049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2023] [Accepted: 07/12/2023] [Indexed: 10/06/2023] Open
Abstract
Iatrogenic vascular air embolism is a relatively infrequent event but is associated with significant morbidity and mortality. These emboli can arise in many clinical settings such as neurosurgery, cardiac surgery, and liver transplantation, but more recently, endoscopy, hemodialysis, thoracentesis, tissue biopsy, angiography, and central and peripheral venous access and removal have overtaken surgery and trauma as significant causes of vascular air embolism. The true incidence may be greater since many of these air emboli are asymptomatic and frequently go undiagnosed or unreported. Due to the rarity of vascular air embolism and because of the many manifestations, diagnoses can be difficult and require immediate therapeutic intervention. An iatrogenic air embolism can result in both venous and arterial emboli whose anatomic locations dictate the clinical course. Most clinically significant iatrogenic air emboli are caused by arterial obstruction of small vessels because the pulmonary gas exchange filters the more frequent, smaller volume bubbles that gain access to the venous circulation. However, there is a subset of patients with venous air emboli caused by larger volumes of air who present with more protean manifestations. There have been significant gains in the understanding of the interactions of fluid dynamics, hemostasis, and inflammation caused by air emboli due to in vitro and in vivo studies on flow dynamics of bubbles in small vessels. Intensive research regarding the thromboinflammatory changes at the level of the endothelium has been described recently. The obstruction of vessels by air emboli causes immediate pathoanatomic and immunologic and thromboinflammatory responses at the level of the endothelium. In this review, we describe those immunologic and thromboinflammatory responses at the level of the endothelium as well as evaluate traditional and novel forms of therapy for this rare and often unrecognized clinical condition.
Collapse
Affiliation(s)
- Phillip L. Marsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Ernest E. Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hunter B. Moore
- University of Colorado Health Transplant Surgery - Anschutz Medical Campus, Aurora, CO, United States
| | - Connor M. Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Aboukhaled
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Shaun M. Condon
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | | | - Samuel J. Thomas
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - John R. Larson
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Charles W. Bower
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Craig B. Miller
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | - Michelle L. Pearson
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | | | - David W. Reser
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - George S. Kim
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Brittany M. Troyer
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Doyle Yeager
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Scott G. Thomas
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Daniel P. Srikureja
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Shivani S. Patel
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sofía L. Añón
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Anthony V. Thomas
- Indiana University School of Medicine, South Bend, IN, United States
| | - Joseph B. Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - David E. Van Ryn
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
- Department of Emergency Medicine, Beacon Health System, Elkhart, IN, United States
| | - Saagar V. Pamulapati
- Department of Internal Medicine, Mercy Health Internal Medicine Residency Program, Rockford, IL, United States
| | - Devin Zimmerman
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Byars Wells
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Peter L. Martin
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Christopher W. Seder
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - John G. Aversa
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - Ryan B. Greene
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Robert J. March
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Hau C. Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel H. Fulkerson
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Stefani A. Vande Lune
- Department of Emergency Medicine, Naval Medical Center Portsmouth, Portsmouth, VA, United States
| | - Tom E. Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Erik W. Nielsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Benjamin S. Storm
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Mark M. Walsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Indiana University School of Medicine, South Bend, IN, United States
| |
Collapse
|
2
|
Velázquez-Wallraf A, Caballero MJ, Fernández A, Betancor MB, Saavedra P, Hemingway HW, Bernaldo de Quirós Y. Biomarkers related to gas embolism: Gas score, pathology, and gene expression in a gas bubble disease model. PLoS One 2023; 18:e0288659. [PMID: 37440588 DOI: 10.1371/journal.pone.0288659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Fish exposed to water supersaturated with dissolved gas experience gas embolism similar to decompression sickness (DCS), known as gas bubble disease (GBD) in fish. GBD has been postulated as an alternative to traditional mammals' models on DCS. Gas embolism can cause mechanical and biochemical damage, generating pathophysiological responses. Increased expression of biomarkers of cell damage such as the heat shock protein (HSP) family, endothelin 1 (ET-1) or intercellular adhesion molecule 1 (ICAM-1) has been observed, being a possible target for further studies of gas embolism. The GBD model consisted of exposing fish to supersaturation in water with approximately 170% total dissolved gas (TDG) for 18 hours, producing severe gas embolism. This diagnosis was confirmed by a complete histopathological exam and the gas score method. HSP70 showed a statistically significant upregulation compared to the control in all the studied organs (p <0.02). Gills and heart showed upregulation of HSP90 with statistical significance (p = 0.015 and p = 0.02, respectively). In addition, HSP70 gene expression in gills was positively correlated with gas score (p = 0.033). These results suggest that gas embolism modify the expression of different biomarkers, with HSP70 being shown as a strong marker of this process. Furthermore, gas score is a useful tool to study the abundance of gas bubbles, although individual variability always remains present. These results support the validity of the GBD model in fish to study gas embolism in diseases such as DCS.
Collapse
Affiliation(s)
- Alicia Velázquez-Wallraf
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Maria José Caballero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Mónica B Betancor
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Pedro Saavedra
- Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Holden W Hemingway
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
3
|
Velázquez-Wallraf A, Fernández A, Caballero MJ, Arregui M, González Díaz Ó, Betancor MB, Bernaldo de Quirós Y. Establishment of a fish model to study gas-bubble lesions. Sci Rep 2022; 12:6592. [PMID: 35449183 PMCID: PMC9023494 DOI: 10.1038/s41598-022-10539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2021] [Accepted: 04/01/2022] [Indexed: 11/08/2022] Open
Abstract
Decompression sickness (DCS) is a clinical syndrome caused by the formation of systemic intravascular and extravascular gas bubbles. The presence of these bubbles in blood vessels is known as gas embolism. DCS has been described in humans and animals such as sea turtles and cetaceans. To delve deeper into DCS, experimental models in terrestrial mammals subjected to compression/decompression in a hyperbaric chamber have been used. Fish can suffer from gas bubble disease (GBD), characterized by the formation of intravascular and extravascular systemic gas bubbles, similarly to that observed in DCS. Given these similarities and the fact that fish develop this disease naturally in supersaturated water, they could be used as an alternative experimental model for the study of the pathophysiological aspect of gas bubbles. The objective of this study was to obtain a reproducible model for GBD in fish by an engineering system and a complete pathological study, validating this model for the study of the physiopathology of gas related lesions in DCS. A massive and severe GBD was achieved by exposing the fish for 18 h to TDG values of 162-163%, characterized by the presence of severe hemorrhages and the visualization of massive quantities of macroscopic and microscopic gas bubbles, systemically distributed, circulating through different large vessels of experimental fish. These pathological findings were the same as those described in small mammals for the study of explosive DCS by hyperbaric chamber, validating the translational usefulness of this first fish model to study the gas-bubbles lesions associated to DCS from a pathological standpoint.
Collapse
Affiliation(s)
- Alicia Velázquez-Wallraf
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - María José Caballero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain.
| | - Marina Arregui
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Óscar González Díaz
- Physical and Chemical Instrumental Center for the Development of Applied Research Technology and Scientific Estate, Institute for Environmental Studies and Natural Resources (I-UNAT), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
4
|
Tang SE, Liao WI, Pao HP, Hsu CW, Wu SY, Huang KL, Chu SJ. Poloxamer 188 Attenuates Ischemia-Reperfusion-Induced Lung Injury by Maintaining Cell Membrane Integrity and Inhibiting Multiple Signaling Pathways. Front Pharmacol 2021; 12:650573. [PMID: 34335242 PMCID: PMC8319770 DOI: 10.3389/fphar.2021.650573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Poloxamer 188 (P188) possesses anti-inflammatory properties and can help to maintain plasma membrane function. P188 has been reported to exert beneficial effects in the treatment of various disorders. However, the effects of P188 in ischemia/reperfusion (IR)-induced acute lung injury have not been examined. Methods: We investigated the ability of P188 to attenuate IR-induced acute lung injury in rats and hypoxia/reoxygenation (HR) injury in murine epithelial cells. Isolated perfused rat lungs were exposed to 40 min ischemia followed by 60 min reperfusion to induce IR injury. Results: IR led to lung edema, increased pulmonary arterial pressure, promoted lung tissue inflammation and oxidative stress, and upregulated the levels of TNF-α, IL-6 and CINC-1, and increased Lactic dehydrogenase (LDH) activity in bronchoalveolar lavage fluid. IR also downregulated the levels of inhibitor of κB (IκB-α), upregulated nuclear factor (NF)-κB (NF-κB), and promoted apoptosis in lung tissues. P188 significantly suppressed all these effects. In vitro, P188 also exerted a similar effect in murine lung epithelial cells exposed to HR. Furthermore, P188 reduced the number of propidium iodide-positive cells, maintained cell membrane integrity, and enhanced cell membrane repair following HR. Conclusion: We conclude that P188 protects against lung IR injury by suppressing multiple signaling pathways and maintaining cell membrane integrity.
Collapse
Affiliation(s)
- Shih-En Tang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Wang Hsu
- Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
Velázquez-Wallraf A, Fernández A, Caballero MJ, Møllerløkken A, Jepson PD, Andrada M, Bernaldo de Quirós Y. Decompressive Pathology in Cetaceans Based on an Experimental Pathological Model. Front Vet Sci 2021; 8:676499. [PMID: 34169109 PMCID: PMC8218990 DOI: 10.3389/fvets.2021.676499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022] Open
Abstract
Decompression sickness (DCS) is a widely known clinical syndrome in human medicine, mainly in divers, related to the formation of intravascular and extravascular gas bubbles. Gas embolism and decompression-like sickness have also been described in wild animals, such as cetaceans. It was hypothesized that adaptations to the marine environment protected them from DCS, but in 2003, decompression-like sickness was described for the first time in beaked whales, challenging this dogma. Since then, several episodes of mass strandings of beaked whales coincidental in time and space with naval maneuvers have been recorded and diagnosed with DCS. The diagnosis of human DCS is based on the presence of clinical symptoms and the detection of gas embolism by ultrasound, but in cetaceans, the diagnosis is limited to forensic investigations. For this reason, it is necessary to resort to experimental animal models to support the pathological diagnosis of DCS in cetaceans. The objective of this study is to validate the pathological results of cetaceans through an experimental rabbit model wherein a complete and detailed histopathological analysis was performed. Gross and histopathological results were very similar in the experimental animal model compared to stranded cetaceans with DCS, with the presence of gas embolism systemically distributed as well as emphysema and hemorrhages as primary lesions in different organs. The experimental data reinforces the pathological findings found in cetaceans with DCS as well as the hypothesis that individuality plays an essential role in DCS, as it has previously been proposed in animal models and human diving medicine.
Collapse
Affiliation(s)
- Alicia Velázquez-Wallraf
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Maria José Caballero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Andreas Møllerløkken
- Faculty of Engineering, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Paul D Jepson
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Marisa Andrada
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
6
|
Zhou MY, Zhang L, Zheng DL, Lai YY, Liu PM, Liu L, Kuang SJ, Yang H, Rao F, Long H, Deng CY. Effect of BTP2 on agonist-induced vasoconstriction in the mouse aorta in vitro. Clin Exp Pharmacol Physiol 2021; 48:726-734. [PMID: 33565136 DOI: 10.1111/1440-1681.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2020] [Accepted: 01/12/2021] [Indexed: 11/29/2022]
Abstract
BTP2 is a potent inhibitor of store-operated Ca2+ entry (SOCE), which plays a vital role in vasoconstriction. However, the direct effect of BTP2 on the contractile response remains unclear. Here, we investigated the effects and mechanisms of action of BTP2 in the mouse aorta. Isometric tension was measured using a Multi Myograph System with two stainless steel wires. Ca2+ transient was recorded by confocal laser scanning microscope. The results showed that BTP2 markedly suppressed vasoconstriction mediated by SOCE and Ca2+ influx mediated by SOCE. The cumulative concentration of BTP2 had no effect on the baseline of mouse aortic rings, whereas it increased vasoconstriction stimulated by 3 μmol/L Phenylephrine. BTP2 (1 μmol/L) significantly increased vasoconstriction induced by 3 μmol/L Phe or cumulative concentration. BTP2 also promoted noradrenaline-induced aortic contraction. However, Phe- and noradrenaline-induced contraction was not affected by 0.3 or 3 μmol/L BTP2, and BTP2 at 10 μmol/L significantly suppressed aortic contraction. BTP2 inhibited 5-HT-evoked contraction in a concentration-dependent manner. BTP2 at higher concentrations (>3 μmol/L) inhibited CaCl2 -induced and 60 mmol/L K+ -induced contraction with progressive reduction of maximal contraction in a concentration-dependent manner. These results suggest that 1 μmol/L BTP2 increases contraction evoked by α1 adrenoreceptor activation. BTP2 at higher concentrations may inhibit Cav1.2 channels.
Collapse
Affiliation(s)
- Meng-Yuan Zhou
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dan-Lin Zheng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ying-Yu Lai
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pei-Ming Liu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Su-Juan Kuang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang Rao
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huang Long
- Department of Cardiology, Affiliated Hospital of Jiujiang University, Jiangxi Province, China
| | - Chun-Yu Deng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|