1
|
Stevens-Hernandez CJ, Flatt JF, Kupzig S, Bruce LJ. Reticulocyte Maturation and Variant Red Blood Cells. Front Physiol 2022; 13:834463. [PMID: 35356079 PMCID: PMC8959883 DOI: 10.3389/fphys.2022.834463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
The bone marrow produces billions of reticulocytes daily. These reticulocytes mature into red blood cells by reducing their plasma membrane by 20% and ejecting or degrading residual internal organelles, membranes and proteins not required by the mature cell. This process occurs by autophagy, protein degradation and vesiculation but is not well understood. We previously reported that Southeast Asian Ovalocytic RBCs demonstrate incomplete reticulocyte maturation and we have now extended this study to a number of other variant RBCs. By comparing the profile of a pure reticulocyte preparation of cultured red cells with these variant cells, we show that the largest of these cells, the overhydrated hereditary stomatocytosis cells, are the least mature, they barely reduced their plasma membrane and contain large amounts of proteins that should have been reduced or removed. Intermediate sized variant RBCs appear to be more mature but retain some endoplasmic reticulum and residual membrane proteins. We propose that the size and composition of these variant cell types correlate with the different stages of reticulocyte maturation and provide insight into the reticulocyte maturation process.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Component Development Laboratory, NHS Blood and Transplant, Long Road, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Sabine Kupzig
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Component Development Laboratory, NHS Blood and Transplant, Long Road, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
2
|
Stevens-Hernandez CJ, Bruce LJ. Reticulocyte Maturation. MEMBRANES 2022; 12:311. [PMID: 35323786 PMCID: PMC8953437 DOI: 10.3390/membranes12030311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Changes to the membrane proteins and rearrangement of the cytoskeleton must occur for a reticulocyte to mature into a red blood cell (RBC). Different mechanisms of reticulocyte maturation have been proposed to reduce the size and volume of the reticulocyte plasma membrane and to eliminate residual organelles. Lysosomal protein degradation, exosome release, autophagy and the extrusion of large autophagic-endocytic hybrid vesicles have been shown to contribute to reticulocyte maturation. These processes may occur simultaneously or perhaps sequentially. Reticulocyte maturation is incompletely understood and requires further investigation. RBCs with membrane defects or cation leak disorders caused by genetic variants offer an insight into reticulocyte maturation as they present characteristics of incomplete maturation. In this review, we compare the structure of the mature RBC membrane with that of the reticulocyte. We discuss the mechanisms of reticulocyte maturation with a focus on incomplete reticulocyte maturation in red cell variants.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
- School of Biochemistry, University of Bristol, Bristol BS8 ITD, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
| |
Collapse
|
3
|
Cloos AS, Daenen LGM, Maja M, Stommen A, Vanderroost J, Van Der Smissen P, Rab M, Westerink J, Mignolet E, Larondelle Y, Terrasi R, Muccioli GG, Dumitru AC, Alsteens D, van Wijk R, Tyteca D. Impaired Cytoskeletal and Membrane Biophysical Properties of Acanthocytes in Hypobetalipoproteinemia - A Case Study. Front Physiol 2021; 12:638027. [PMID: 33708142 PMCID: PMC7940373 DOI: 10.3389/fphys.2021.638027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
Familial hypobetalipoproteinemia is a metabolic disorder mainly caused by mutations in the apolipoprotein B gene. In its homozygous form it can lead without treatment to severe ophthalmological and neurological manifestations. In contrast, the heterozygous form is generally asymptomatic but associated with a low risk of cardiovascular disease. Acanthocytes or thorny red blood cells (RBCs) are described for both forms of the disease. However, those morphological changes are poorly characterized and their potential consequences for RBC functionality are not understood. Thus, in the present study, we asked whether, to what extent and how acanthocytes from a patient with heterozygous familial hypobetalipoproteinemia could exhibit altered RBC functionality. Acanthocytes represented 50% of the total RBC population and contained mitoTracker-positive surface patches, indicating the presence of mitochondrial fragments. While RBC osmotic fragility, calcium content and ATP homeostasis were preserved, a slight decrease of RBC deformability combined with an increase of intracellular free reactive oxygen species were observed. The spectrin cytoskeleton was altered, showing a lower density and an enrichment in patches. At the membrane level, no obvious modification of the RBC membrane fatty acids nor of the cholesterol content were detected but the ceramide species were all increased. Membrane stiffness and curvature were also increased whereas transversal asymmetry was preserved. In contrast, lateral asymmetry was highly impaired showing: (i) increased abundance and decreased functionality of sphingomyelin-enriched domains; (ii) cholesterol enrichment in spicules; and (iii) ceramide enrichment in patches. We propose that oxidative stress induces cytoskeletal alterations, leading to increased membrane stiffness and curvature and impaired lipid lateral distribution in domains and spicules. In addition, ceramide- and spectrin-enriched patches could result from a RBC maturation defect. Altogether, the data indicate that acanthocytes are associated with cytoskeletal and membrane lipid lateral asymmetry alterations, while deformability is only mildly impaired. In addition, familial hypobetalipoproteinemia might also affect RBC precursors leading to disturbed RBC maturation. This study paves the way for the potential use of membrane biophysics and lipid vital imaging as new methods for diagnosis of RBC disorders.
Collapse
Affiliation(s)
- Anne-Sophie Cloos
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laura G M Daenen
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mauriane Maja
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Amaury Stommen
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Juliette Vanderroost
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Minke Rab
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jan Westerink
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eric Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Richard van Wijk
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Donatienne Tyteca
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
4
|
Pollet H, Cloos AS, Stommen A, Vanderroost J, Conrard L, Paquot A, Ghodsi M, Carquin M, Léonard C, Guthmann M, Lingurski M, Vermylen C, Killian T, Gatto L, Rider M, Pyr dit Ruys S, Vertommen D, Vikkula M, Brouillard P, Van Der Smissen P, Muccioli GG, Tyteca D. Aberrant Membrane Composition and Biophysical Properties Impair Erythrocyte Morphology and Functionality in Elliptocytosis. Biomolecules 2020; 10:biom10081120. [PMID: 32751168 PMCID: PMC7465299 DOI: 10.3390/biom10081120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Red blood cell (RBC) deformability is altered in inherited RBC disorders but the mechanism behind this is poorly understood. Here, we explored the molecular, biophysical, morphological, and functional consequences of α-spectrin mutations in a patient with hereditary elliptocytosis (pEl) almost exclusively expressing the Pro260 variant of SPTA1 and her mother (pElm), heterozygous for this mutation. At the molecular level, the pEI RBC proteome was globally preserved but spectrin density at cell edges was increased. Decreased phosphatidylserine vs. increased lysophosphatidylserine species, and enhanced lipid peroxidation, methemoglobin, and plasma acid sphingomyelinase (aSMase) activity were observed. At the biophysical level, although membrane transversal asymmetry was preserved, curvature at RBC edges and rigidity were increased. Lipid domains were altered for membrane:cytoskeleton anchorage, cholesterol content and response to Ca2+ exchange stimulation. At the morphological and functional levels, pEl RBCs exhibited reduced size and circularity, increased fragility and impaired membrane Ca2+ exchanges. The contribution of increased membrane curvature to the pEl phenotype was shown by mechanistic experiments in healthy RBCs upon lysophosphatidylserine membrane insertion. The role of lipid domain defects was proved by cholesterol depletion and aSMase inhibition in pEl. The data indicate that aberrant membrane content and biophysical properties alter pEl RBC morphology and functionality.
Collapse
Affiliation(s)
- Hélène Pollet
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Anne-Sophie Cloos
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Amaury Stommen
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Juliette Vanderroost
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Louise Conrard
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (A.P.); (G.G.M.)
| | - Marine Ghodsi
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Mélanie Carquin
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Catherine Léonard
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Manuel Guthmann
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Maxime Lingurski
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Christiane Vermylen
- PEDI Unit, Institut de Recherche Expérimentale et Clinique & Saint-Luc Hospital, UCLouvain, 1200 Brussels, Belgium;
| | - Theodore Killian
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (T.K.); (L.G.)
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (T.K.); (L.G.)
| | - Mark Rider
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.R.); (S.P.d.R.); (D.V.)
| | - Sébastien Pyr dit Ruys
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.R.); (S.P.d.R.); (D.V.)
| | - Didier Vertommen
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.R.); (S.P.d.R.); (D.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.V.); (P.B.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.V.); (P.B.)
| | - Patrick Van Der Smissen
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (A.P.); (G.G.M.)
| | - Donatienne Tyteca
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
- Correspondence:
| |
Collapse
|
5
|
Cloos AS, Ghodsi M, Stommen A, Vanderroost J, Dauguet N, Pollet H, D'Auria L, Mignolet E, Larondelle Y, Terrasi R, Muccioli GG, Van Der Smissen P, Tyteca D. Interplay Between Plasma Membrane Lipid Alteration, Oxidative Stress and Calcium-Based Mechanism for Extracellular Vesicle Biogenesis From Erythrocytes During Blood Storage. Front Physiol 2020; 11:712. [PMID: 32719614 PMCID: PMC7350142 DOI: 10.3389/fphys.2020.00712] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
The shedding of extracellular vesicles (EVs) from the red blood cell (RBC) surface is observed during senescence in vivo and RBC storage in vitro. Two main models for EV shedding, respectively based on calcium rise and oxidative stress, have been proposed in the literature but the role of the plasma membrane lipid composition and properties is not understood. Using blood in K+/EDTA tubes stored for up to 4 weeks at 4°C as a relevant RBC vesiculation model, we showed here that the RBC plasma membrane lipid composition, organization in domains and biophysical properties were progressively modified during storage and contributed to the RBC vesiculation. First, the membrane content in cholesterol and linoleic acid decreased whereas lipid peroxidation and spectrin:membrane occupancy increased, all compatible with higher membrane rigidity. Second, phosphatidylserine surface exposure showed a first rapid rise due to membrane cholesterol decrease, followed by a second calcium-dependent increase. Third, lipid domains mainly enriched in GM1 or sphingomyelin strongly increased from the 1st week while those mainly enriched in cholesterol or ceramide decreased during the 1st and 4th week, respectively. Fourth, the plasmatic acid sphingomyelinase activity considerably increased upon storage following the sphingomyelin-enriched domain rise and potentially inducing the loss of ceramide-enriched domains. Fifth, in support of the shedding of cholesterol- and ceramide-enriched domains from the RBC surface, the number of cholesterol-enriched domains lost and the abundance of EVs released during the 1st week perfectly matched. Moreover, RBC-derived EVs were enriched in ceramide at the 4th week but depleted in sphingomyelin. Then, using K+/EDTA tubes supplemented with glucose to longer preserve the ATP content, we better defined the sequence of events. Altogether, we showed that EV shedding from lipid domains only represents part of the global vesiculation mechanistics, for which we propose four successive events (cholesterol domain decrease, oxidative stress, sphingomyelin/sphingomyelinase/ceramide/calcium alteration and phosphatidylserine exposure).
Collapse
Affiliation(s)
- Anne-Sophie Cloos
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Marine Ghodsi
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Amaury Stommen
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Juliette Vanderroost
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- GECE Unit and CYTF Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Hélène Pollet
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ludovic D'Auria
- NCHM Unit, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Eric Mignolet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrick Van Der Smissen
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|