1
|
Lashin HI, Elgazzar FM, El sharkawy SI, Elsawaf SM, Sobh ZK. Development of a risk-prediction nomogram for in-hospital adverse cardiovascular events in acute cardiotoxic agents poisoning. Toxicol Rep 2024; 13:101826. [PMID: 39654999 PMCID: PMC11626828 DOI: 10.1016/j.toxrep.2024.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Adverse cardiovascular events (ACVE) are serious sequelae of acute poisoning with cardiotoxic agents. They include shock, acute myocardial injury, ventricular dysrhythmias, and cardiac arrest. Early identification of high-risk patients could improve their prognosis. Therefore, this study developed a risk-prediction nomogram to assess the risk of ACVE in patients with acute cardiotoxicities. This prospective cohort study was conducted at Tanta University Poison Control Center, Tanta, Egypt, from April 2023 to March 2024. It included 186 patients with acute cardiotoxic agent poisoning. ACVE occurred in 36 % of patients and were significantly associated with ICU admission and mortality (P<0.001). A multivariable logistic regression model was generated that included six significant predictors; modified shock index (AOR of 6.431, 95 % CI: 1.361-30.398, P = 0.02), serum bicarbonate level (AOR of 0.747, 95 % CI: 0.661-0.843, P = 0.001), oxygen saturation (AOR of 0.867, 95 % CI: 0.810-0.929, P = 0.001), ST segment changes (AOR of 9.196, 95 % CI: 1.989-42.508, P = 0.011), prolonged QTc (AOR of 3.015, 95 % CI: 0.975-9.325, P = 0.044), and QRS width (AOR of 1.032, 95 % CI: 1.001-1.064, P = 0.009). The nomogram was statistically significant (P <0.001) and could predict ACVE with 89.2 % accuracy. A Receiver Operating Characteristics analysis was conducted to ensure the nomogram's discrimination ability (Area under the curve =0.956). Also, the calibration curve was drawn using the bootstrapping method to ensure the nomogram's internal validity. The current study provided an easily applicable nomogram that could accurately predict ACVE following acute cardiotoxicities, regardless of the causative agent.
Collapse
Affiliation(s)
- Heba I. Lashin
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fatma M. Elgazzar
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Sally M. Elsawaf
- Cardiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Zahraa Khalifa Sobh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Riha I, Salameh A, Hoschke A, Raffort C, Koedel J, Rassler B. Hypoxia-Induced Pulmonary Injury-Adrenergic Blockade Attenuates Nitrosative Stress, and Proinflammatory Cytokines but Not Pulmonary Edema. J Cardiovasc Dev Dis 2024; 11:195. [PMID: 39057617 PMCID: PMC11277000 DOI: 10.3390/jcdd11070195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Hypoxia can induce pulmonary edema (PE) and inflammation. Furthermore, hypoxia depresses left ventricular (LV) inotropy despite sympathetic activation. To study the role of hypoxic sympathetic activation, we investigated the effects of hypoxia with and without adrenergic blockade (AB) on cardiovascular dysfunction and lung injury, i.e., pulmonary edema, congestion, inflammation, and nitrosative stress. Eighty-six female rats were exposed for 72 h to normoxia or normobaric hypoxia and received infusions with NaCl, prazosin, propranolol, or prazosin-propranolol combination. We evaluated hemodynamic function and performed histological and immunohistochemical analyses of the lung. Hypoxia significantly depressed LV but not right ventricular (RV) inotropic and lusitropic functions. AB significantly decreased LV function in both normoxia and hypoxia. AB effects on RV were weaker. Hypoxic rats showed signs of moderate PE and inflammation. This was accompanied by elevated levels of tumor necrosis factor α (TNFα) and nitrotyrosine, a marker of nitrosative stress in the lungs. In hypoxia, all types of AB markedly reduced both TNFα and nitrotyrosine. However, AB did not attenuate PE. The results suggest that hypoxia-induced sympathetic activation contributes to inflammation and nitrosative stress in the lungs but not to PE. We suggest that AB in hypoxia aggravates hypoxia-induced inotropic LV dysfunction and backlog into the pulmonary circulation, thus promoting PE.
Collapse
Affiliation(s)
- Isabel Riha
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (I.R.); (A.H.)
| | - Aida Salameh
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, 04289 Leipzig, Germany; (A.S.); (C.R.)
| | - Annekathrin Hoschke
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (I.R.); (A.H.)
| | - Coralie Raffort
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, 04289 Leipzig, Germany; (A.S.); (C.R.)
| | - Julia Koedel
- Institute of Pathology, University of Leipzig, 04103 Leipzig, Germany;
| | - Beate Rassler
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (I.R.); (A.H.)
| |
Collapse
|
3
|
Dagilgan S, Dundar-Yenilmez E, Tuli A, Urunsak IF, Erdogan S. Acidosis defense mechanisms in the preimplantation stages of embryos in BALB/c strain mice. Theriogenology 2024; 217:136-142. [PMID: 38277795 DOI: 10.1016/j.theriogenology.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Regulation of intracellular pH (pHi) is an important homeostatic function of cells. There are three major pHi regulatory mechanisms: the HCO3-/Cl- exchanger (AE), which alleviates alkalosis, and the Na+/H+ exchanger (NHE) and Na+,HCO3-/Cl- exchanger (NDBCE), both of which counteract acidosis. NHE activity, which is high at the germinal vesicle stage of oocyte, is inhibited during meiotic maturation, while this inhibition is abolished when the oocyte reaches the pronuclear (PN) stage of the zygote. On the other hand, we have previously found that NDBCE performs complementary regulation against acidosis during meiotic maturation. Additionally, we found that AE activity, which is a defense mechanism against alkalosis, gradually decreases during preimplantation period of embryonic development. Considering that NHE activity is inhibited during meiotic maturation and AE activity gradually decreases during embryonic development stages, we investigated whether NHE and NDBCE activities, both of which act against acidosis, functionally change from the PN zygote to the blastocyst stage of the embryo and identified these pH-regulating proteins at the molecular level in mice of the Balb/c strain. PN zygotes, two-cell (2-c), four-cell (4-c), morula and blastocyst stage embryos were obtained from 5-8-week-old, sexually mature female Balb/c mice by using the classical superovulation procedure. pHi was recorded by using the microspectrofluorometric technique on zygotes and embryos simultaneously loaded with the pH-sensitive fluorophore, 2',7'-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). The activities of NHE and NDBCE were determined from the recovery curve of induced-acidosis in bicarbonate-free and bicarbonate-containing media, respectively. Specific inhibitors such as cariporide (1 μM), S3226 (1 and 10 μM), EIPA (1, 5, and 25 μM), and amiloride (1 mM) were used to functionally identify NHE isoforms, and the nonspecific inhibitor 4,4'-diisocyanatostilbene-2,2' disulphonic acid, disodium salt (DIDS) was used to confirm NDBCE activity. The isoforms of the pHi-regulatory proteins were also identified by molecular biology using real-time PCR. We found that NHE activity was high at all embryonic stages, and differences between stages were not significant. Functional and molecular findings indicated that isoforms of NHE 1 and 5 are present in the blastocyst, whereas isoforms of NHE 1, 3, and 4 are functional at earlier embryonic stages. Although the contribution of NDBCE activity to recovery from induced-acidosis was detected at all embryonic stages, it was significant only in the PN zygote and the 2-c embryo. This finding was confirmed by molecular analysis, which detected the expression of SLC4A8 encoding NDBCE at all embryonic stages. In conclusion, NHE is an active and important defense mechanism against acidosis and is encoded by at least two protein isoforms in all stages of the Balb/c strain of mice. NDBCE has a supportive function in all embryonic stages, especially in the PN zygote and the 2-c embryo. Preimplantation stage embryos have effective mechanisms to defend against acidosis in response to their metabolic end products (increased acid load) and the acidic environment in utero.
Collapse
Affiliation(s)
- Senay Dagilgan
- Cukurova University Faculty of Medicine, Departments of Physiology, Balcali, 01330, Adana, Turkey
| | - Ebru Dundar-Yenilmez
- Cukurova University Faculty of Medicine, Biochemistry, Balcali, 01330, Adana, Turkey
| | - Abdullah Tuli
- Cukurova University Faculty of Medicine, Biochemistry, Balcali, 01330, Adana, Turkey
| | - Ibrahim Ferhat Urunsak
- Cukurova University Faculty of Medicine, Obstetric and Gynaecology, Balcali, 01330, Adana, Turkey
| | - Seref Erdogan
- Cukurova University Faculty of Medicine, Departments of Physiology, Balcali, 01330, Adana, Turkey.
| |
Collapse
|
4
|
Qin H, Zhou J. Myocardial Protection by Desflurane: From Basic Mechanisms to Clinical Applications. J Cardiovasc Pharmacol 2023; 82:169-179. [PMID: 37405905 DOI: 10.1097/fjc.0000000000001448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
ABSTRACT Coronary heart disease is an affliction that is common and has an adverse effect on patients' quality of life and survival while also raising the risk of intraoperative anesthesia. Mitochondria are the organelles most closely associated with the pathogenesis, development, and prognosis of coronary heart disease. Ion abnormalities, an acidic environment, the production of reactive oxygen species, and other changes during abnormal myocardial metabolism cause the opening of mitochondrial permeability transition pores, which disrupts electron transport, impairs mitochondrial function, and even causes cell death. Differences in reliability and cost-effectiveness between desflurane and other volatile anesthetics are minor, but desflurane has shown better myocardial protective benefits in the surgical management of patients with coronary artery disease. The results of myocardial protection by desflurane are briefly summarized in this review, and biological functions of the mitochondrial permeability transition pore, mitochondrial electron transport chain, reactive oxygen species, adenosine triphosphate-dependent potassium channels, G protein-coupled receptors, and protein kinase C are discussed in relation to the protective mechanism of desflurane. This article also discusses the effects of desflurane on patient hemodynamics, myocardial function, and postoperative parameters during coronary artery bypass grafting. Although there are limited and insufficient clinical investigations, they do highlight the possible advantages of desflurane and offer additional suggestions for patients.
Collapse
Affiliation(s)
- Han Qin
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | | |
Collapse
|
5
|
Neubert E, Rassler B, Hoschke A, Raffort C, Salameh A. Effects of Normobaric Hypoxia and Adrenergic Blockade over 72 h on Cardiac Function in Rats. Int J Mol Sci 2023; 24:11417. [PMID: 37511176 PMCID: PMC10379660 DOI: 10.3390/ijms241411417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In rats, acute normobaric hypoxia depressed left ventricular (LV) inotropic function. After 24 h of hypoxic exposure, a slight recovery of LV function occurred. We speculated that prolonged hypoxia (72 h) would induce acclimatization and, hence, recovery of LV function. Moreover, we investigated biomarkers of nitrosative stress and apoptosis as possible causes of hypoxic LV depression. To elucidate the role of hypoxic sympathetic activation, we studied whether adrenergic blockade would further deteriorate the general state of the animals and their cardiac function. Ninety-four rats were exposed over 72 h either to normal room air (N) or to normobaric hypoxia (H). The rodents received infusion (0.1 mL/h) with 0.9% NaCl or with different adrenergic blockers. Despite clear signs of acclimatization to hypoxia, the LV depression continued persistently after 72 h of hypoxia. Immunohistochemical analyses revealed significant increases in markers of nitrosative stress, adenosine triphosphate deficiency and apoptosis in the myocardium, which could provide a possible explanation for the absence of LV function recovery. Adrenergic blockade had a slightly deteriorative effect on the hypoxic LV function compared to the hypoxic group with maintained sympathetic efficacy. These findings show that hypoxic sympathetic activation compensates, at least partially, for the compromised function in hypoxic conditions, therefore emphasizing its importance for hypoxia adaptation.
Collapse
Affiliation(s)
- Elias Neubert
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (E.N.); (A.H.)
| | - Beate Rassler
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (E.N.); (A.H.)
| | - Annekathrin Hoschke
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (E.N.); (A.H.)
| | - Coralie Raffort
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, 04289 Leipzig, Germany; (C.R.); (A.S.)
| | - Aida Salameh
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, 04289 Leipzig, Germany; (C.R.); (A.S.)
| |
Collapse
|
6
|
Zaki SA, Shanbag P. Metabolic Acidosis in Children: A Literature Review. EUROPEAN MEDICAL JOURNAL 2023. [DOI: 10.33590/emj/10302459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Metabolic acidosis is characterised by a primary decrease in the serum bicarbonate concentration, a secondary decrease in the arterial partial pressure of CO2, and a reduction in blood pH. Metabolic acidosis, acute or chronic, may have deleterious effects on cellular function and cause increased morbidity and mortality. A systematic review of the available literature was performed to identify data on the prevalence, manifestations, cause, outcomes, and treatment of metabolic acidosis in children. Online databases (Ovid Medline, Embase, and PubMed), commercial search engines (including Google), and chapters on metabolic acidosis in the standard textbooks of paediatrics and medicine were reviewed.
Systematic approach to acute metabolic acidosis starts with proper history taking and examination. This is followed by assessment of acid-base parameters, including pH, partial pressure of CO2, and bicarbonate concentration in arterial blood. Blood gas is needed to differentiate primary metabolic acidosis from compensated respiratory alkalosis. Once the diagnosis of a metabolic acidosis has been confirmed, serum electrolyte values are used to determine the serum anion gap. The various causes of increased and normal anion gap metabolic acidosis have been discussed in the article. The main aim of treatment in metabolic acidosis is to reverse the primary pathophysiology. In acute metabolic acidosis, sodium bicarbonate therapy is not beneficial due to potential complications and is reserved for specific situations. Base therapy is used in chronic metabolic acidosis where it ameliorates many of its untoward effects. Other modalities of treatment of metabolic acidosis include peritoneal or haemodialysis and tris-hydroxymethyl aminomethane.
Collapse
Affiliation(s)
- Syed Ahmed Zaki
- Department of Pediatrics, All India Institute of Medical Sciences, Hyderabad, India
| | - Preeti Shanbag
- Sir Jamshedjee Jeejeebhoy Group of Hospital and Grant Medical College, Mumbai, India
| |
Collapse
|
7
|
Yin Y, Niu Q, Hou H, Que H, Mi S, Yang J, Li Z, Wang H, Yu Y, Zhu M, Zhan H, Wang Q, Li P. PAE ameliorates doxorubicin-induced cardiotoxicity via suppressing NHE1 phosphorylation and stimulating PI3K/AKT phosphorylation. Int Immunopharmacol 2022; 113:109274. [DOI: 10.1016/j.intimp.2022.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
8
|
Current Treatment Options for COVID-19 Associated Mucormycosis: Present Status and Future Perspectives. J Clin Med 2022; 11:jcm11133620. [PMID: 35806905 PMCID: PMC9267579 DOI: 10.3390/jcm11133620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Mucormycosis has become increasingly associated with COVID-19, leading to the use of the term “COVID-19 associated mucormycosis (CAM)”. Treatment of CAM is challenging due to factors such as resistance to many antifungals and underlying co-morbidities. India is particularly at risk for this disease due to the large number of patients with COVID-19 carrying comorbidities that predispose them to the development of mucormycosis. Additionally, mucormycosis treatment is complicated due to the atypical symptoms and delayed presentation after the resolution of COVID-19. Since this disease is associated with increased morbidity and mortality, early identification and diagnosis are desirable to initiate a suitable combination of therapies and control the disease. At present, the first-line treatment involves Amphotericin B and surgical debridement. To overcome limitations associated with surgery (invasive, multiple procedures required) and amphotericin B (toxicity, extended duration and limited clinical success), additional therapies can be utilized as adjuncts or alternatives to reduce treatment duration and improve prognosis. This review discusses the challenges associated with treating CAM and the critical aspects for controlling this invasive fungal infection—early diagnosis and initiation of therapy, reversal of risk factors, and adoption of a multipronged treatment strategy. It also details the various therapeutic options (in vitro, in vivo and human case reports) that have been used for the treatment of CAM.
Collapse
|