1
|
Zhou K, Shang Z, Yuan C, Guo Z, Wang Y, Bao D, Zhou J. Can molecular hydrogen supplementation enhance physical performance in healthy adults? A systematic review and meta-analysis. Front Nutr 2024; 11:1387657. [PMID: 38903627 PMCID: PMC11188335 DOI: 10.3389/fnut.2024.1387657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Background Physical exertion during exercise often leads to increased oxidative stress and inflammatory responses, significantly affecting physical performance. Current strategies to mitigate these effects are limited by their effectiveness and potential side effects. Molecular hydrogen (H₂) has gained attention for its antioxidant and anti-inflammatory properties. Studies have suggested that H2 supplementation contributes to antioxidant potential and anti-fatigue during exercise, but the variance in the observations and study protocols is presented across those studies. Objective This systematic review and meta-analysis aimed to comprehensively characterize the effects of H₂ supplementation on physical performance (i.e., endurance, muscular strength, and explosive power), providing knowledge that can inform strategies using H2 for enhancing physical performance. Methods We conducted a literature search of six databases (PubMed, Web of Science, Medline, Sport-Discus, Embase, and PsycINFO) according to the PRISMA guidelines. The data were extracted from the included studies and converted into the standardized mean difference (SMD). After that, we performed random-effects meta-analyses and used the I 2 statistic to evaluate heterogeneity. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to assess the quality of the evidence obtained from this meta-analysis. Results In total, 27 publications consisting of 597 participants were included. The search finally included aerobic endurance, anaerobic endurance, muscular strength, lower limb explosive power, rating of perceived exertion (RPE), blood lactate (BLA), and average heart rate (HRavg) in the effect size (ES) synthesis. The ES of H2 on aerobic endurance, including V̇O2max (SMD = 0.09, p = 0.394; I 2 = 0%) and aerobic endurance exercise (SMD = 0.04, p = 0.687; I 2 = 0%), were not significant and trivial; the ES of H2 on 30 s maximal anaerobic endurance (SMD = 0.19, p = 0.239; I 2 = 0%) was not significant and trivial; the ES of H2 on muscular strength (SMD = 0.19, p = 0.265; I 2 = 0%) was not significant and trivial; but the ES of H2 on lower limb explosive power (SMD = 0.30, p = 0.018; I 2 = 0%) was significant and small. In addition, H2 reduces RPE (SMD = -0.37, p = 0.009; I 2 = 58.0%) and BLA (SMD = -0.37, p = 0.001; I 2 = 22.0%) during exercise, but not HRavg (SMD = -0.27, p = 0.094; I 2 = 0%). Conclusion These findings suggest that H2 supplementation is favorable in healthy adults to improve lower limb explosive power, alleviate fatigue, and boost BLA clearance, but may not be effectively improving aerobic and anaerobic endurance and muscular strength. Future studies with more rigorous designs are thus needed to examine and confirm the effects of H2 on these important functionalities in humans. Systematic review registration http://www.crd.york.ac.uk/PROSPERO.
Collapse
Affiliation(s)
- Kaixiang Zhou
- College of Physical Education and Health Science, Chongqing Normal University, Chongqing, China
| | - Zhangyuting Shang
- College of Physical Education and Health Management, Chongqing University of Education, Chongqing, China
| | - Chaoqun Yuan
- College of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenxiang Guo
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Yubo Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Costa VAB, Midgley AW, Baumgart JK, Carroll S, Astorino TA, Schaun GZ, Fonseca GF, Cunha FA. Confirming the attainment of maximal oxygen uptake within special and clinical groups: A systematic review and meta-analysis of cardiopulmonary exercise test and verification phase protocols. PLoS One 2024; 19:e0299563. [PMID: 38547136 PMCID: PMC10977812 DOI: 10.1371/journal.pone.0299563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/13/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND AND AIM A plateau in oxygen uptake ([Formula: see text]) during an incremental cardiopulmonary exercise test (CPET) to volitional exhaustion appears less likely to occur in special and clinical populations. Secondary maximal oxygen uptake ([Formula: see text]) criteria have been shown to commonly underestimate the actual [Formula: see text]. The verification phase protocol might determine the occurrence of 'true' [Formula: see text] in these populations. The primary aim of the current study was to systematically review and provide a meta-analysis on the suitability of the verification phase for confirming 'true' [Formula: see text] in special and clinical groups. Secondary aims were to explore the applicability of the verification phase according to specific participant characteristics and investigate which test protocols and procedures minimise the differences between the highest [Formula: see text] values attained in the CPET and verification phase. METHODS Electronic databases (PubMed, Web of Science, SPORTDiscus, Scopus, and EMBASE) were searched using specific search strategies and relevant data were extracted from primary studies. Studies meeting inclusion criteria were systematically reviewed. Meta-analysis techniques were applied to quantify weighted mean differences (standard deviations) in peak [Formula: see text] from a CPET and a verification phase within study groups using random-effects models. Subgroup analyses investigated the differences in [Formula: see text] according to individual characteristics and test protocols. The methodological quality of the included primary studies was assessed using a modified Downs and Black checklist to obtain a level of evidence. Participant-level [Formula: see text] data were analysed according to the threshold criteria reported by the studies or the inherent measurement error of the metabolic analysers and displayed as Bland-Altman plots. RESULTS Forty-three studies were included in the systematic review, whilst 30 presented quantitative information for meta-analysis. Within the 30 studies, the highest mean [Formula: see text] values attained in the CPET and verification phase protocols were similar (mean difference = -0.00 [95% confidence intervals, CI = -0.03 to 0.03] L·min-1, p = 0.87; level of evidence, LoE: strong). The specific clinical groups with sufficient primary studies to be meta-analysed showed a similar [Formula: see text] between the CPET and verification phase (p > 0.05, LoE: limited to strong). Across all 30 studies, [Formula: see text] was not affected by differences in test protocols (p > 0.05; LoE: moderate to strong). Only 23 (53.5%) of the 43 reviewed studies reported how many participants achieved a lower, equal, or higher [Formula: see text] value in the verification phase versus the CPET or reported or supplied participant-level [Formula: see text] data for this information to be obtained. The percentage of participants that achieved a lower, equal, or higher [Formula: see text] value in the verification phase was highly variable across studies (e.g. the percentage that achieved a higher [Formula: see text] in the verification phase ranged from 0% to 88.9%). CONCLUSION Group-level verification phase data appear useful for confirming a specific CPET protocol likely elicited [Formula: see text], or a reproducible [Formula: see text], for a given special or clinical group. Participant-level data might be useful for confirming whether specific participants have likely elicited [Formula: see text], or a reproducible [Formula: see text], however, more research reporting participant-level data is required before evidence-based guidelines can be given. TRIAL REGISTRATION PROSPERO (CRD42021247658) https://www.crd.york.ac.uk/prospero.
Collapse
Affiliation(s)
- Victor A. B. Costa
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Adrian W. Midgley
- Department of Sport and Physical Activity, Edge Hill University, Ormskirk, England, United Kingdom
| | - Julia K. Baumgart
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norway, University of Science and Technology, Trondheim, Norway
| | - Sean Carroll
- School of Sport, Exercise and Rehabilitation Sciences, University of Hull, Hull, England, United Kingdom
| | - Todd A. Astorino
- Department of Kinesiology, California State University, San Marcos, CA, United States of America
| | - Gustavo Z. Schaun
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Guilherme F. Fonseca
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Felipe A. Cunha
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Pelletier C. Exercise prescription for persons with spinal cord injury: a review of physiological considerations and evidence-based guidelines. Appl Physiol Nutr Metab 2023; 48:882-895. [PMID: 37816259 DOI: 10.1139/apnm-2023-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Persons with spinal cord injury (SCI) experience gains in fitness, physical and mental health from regular participation in exercise and physical activity. Due to changes in physiological function of the cardiovascular, nervous, and muscular systems, general population physical activity guidelines and traditional exercise prescription methods are not appropriate for the SCI population. Exercise guidelines specific to persons with SCI recommend progressive training beginning at 20 min of moderate to vigorous intensity aerobic exercise twice per week transitioning to 30 min three times per week, with strength training of the major muscle groups two times per week. These population-specific guidelines were designed considering the substantial barriers to physical activity for persons with SCI and can be used to frame an individual exercise prescription. Rating of perceived exertion (i.e., perceptually regulated exercise) is a practical way to indicate moderate to vigorous intensity exercise in community settings. Adapted exercise modes include arm cycle ergometry, hybrid arm-leg cycling, and recumbent elliptical equipment. Body weight-supported treadmill training and other rehabilitation modalities may improve some aspects of health and fitness for people with SCI if completed at sufficient intensity. Disability-specific community programs offer beneficial opportunities for persons with SCI to experience quality exercise opportunities but are not universally available.
Collapse
Affiliation(s)
- Chelsea Pelletier
- School of Health Sciences, Faculty of Human and Health Sciences, University of Northern British Columbia, Prince George, BC, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Zhou K, Liu M, Wang Y, Liu H, Manor B, Bao D, Zhang L, Zhou J. Effects of molecular hydrogen supplementation on fatigue and aerobic capacity in healthy adults: A systematic review and meta-analysis. Front Nutr 2023; 10:1094767. [PMID: 36819697 PMCID: PMC9934906 DOI: 10.3389/fnut.2023.1094767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background Fatigue is oftentimes induced by high-intensity exercise potentially via the exceeded amount of reactive oxygen species, leading to diminished functions (e.g., aerobic capacity) and increased risk of injuries. Studies indicate that molecular hydrogen (H2), with antioxidant and anti-inflammatory properties, may be a promising strategy to alleviate fatigue and improve aerobic capacity. However, such effects have not been comprehensively characterized. Objective To systematically assess the effects of in taking H2 on fatigue and aerobic capacity in healthy adults. Methods The search was conducted in August 2022 in five databases. Studies with randomized controlled or crossover designs that investigated the rating of perceived exertion (RPE), maximal oxygen uptake (VO2max), peak oxygen uptake (VO2peak), and endurance performance were selected. The data (mean ± standard deviation and sample size) were extracted from the included studies and were converted into the standardized mean difference (SMD). Random-effects meta-analyses were performed. Subgroup analysis was used to analyze potential sources of heterogeneity due to intervention period, training status, and type of exercise. Results Seventeen publications (19 studies) consisting of 402 participants were included. The pooled effect sizes of H2 on RPE (SMDpooled = -0.38, 95%CI -0.65 to -0.11, p = 0.006, I 2 = 33.6%, p = 0.149) and blood lactate (SMDpooled = -0.42, 95% CI -0.72 to -0.12, p = 0.006, I 2 = 35.6%, p = 0.114) were small yet significant with low heterogeneity. The pooled effect sizes of H2 on VO2max and VO2peak (SMDpooled = 0.09, 95% CI -0.10 to 0.29, p = 0.333, I 2 = 0%, p = 0.998) and endurance performance (SMDpooled = 0.01, 95% CI -0.23 to 0.25, p = 0.946, I 2 = 0%, p > 0.999) were not significant and trivial without heterogeneity. Subgroup analysis revealed that the effects of H2 on fatigue were impacted significantly by the training status (i.e., untrained and trained), period of H2 implementation, and exercise types (i.e., continuous and intermittent exercises). Conclusions This meta-analysis provides moderate evidence that H2 supplementation alleviates fatigue but does not enhance aerobic capacity in healthy adults. Systematic review registration www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022351559.
Collapse
Affiliation(s)
- Kaixiang Zhou
- College of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Meng Liu
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Yubo Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Haoyang Liu
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Brad Manor
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China,*Correspondence: Dapeng Bao ✉
| | - Luyu Zhang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China,Luyu Zhang ✉
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Wheelchair-modified ergometer rowing exercise in individuals with spinal cord injury: a feasibility, acceptability, and preliminary efficacy study. Spinal Cord Ser Cases 2022; 8:48. [PMID: 35487894 PMCID: PMC9054742 DOI: 10.1038/s41394-022-00518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
STUDY DESIGN Exploratory clinical investigation. OBJECTIVES To assess the feasibility, acceptability, and preliminary efficacy of upper-body rowing exercise adapted to wheelchair users with spinal cord injury (SCI). SETTING University exercise laboratory. METHODS Eight individuals with SCI exercised on a rowing ergometer modified for wheelchair users (REMW), three times weekly, for up to 30 min per session. Participants completed feasibility and acceptability questionnaire (1-5 Likert scale), and the Wheelchair Users Shoulder Pain Index (WUSPI) before and after six weeks of exercise. Average power output (POAVG), distance rowed, percent peak heart rate (%HRpeak), and rating of perceived exertion (RPE) (6-20 scale) were monitored throughout the 18 exercise sessions and analyzed to evaluate preliminary efficacy of the exercise modality. RESULTS All eight participants completed the study (97% adherence). Participants rated the exercise high on the feasibility and acceptability scale; median (interquartile range) = 5.0 (4.0-5.0), where higher numbers indicated greater feasibility. Shoulder pain was reduced by 21% yet not significantly different from baseline (p = 0.899). Physiological measures (%HRpeak = 80-83%; RPE = 15.0-16.0) indicated a high cardiovascular training load. From week 1 to week 6, POAVG and distance rowed increased by 37 and 36%, respectively (both p ≤ 0.001). CONCLUSIONS Data from six weeks of exercise on the REMW suggests that upper-body rowing is a feasible and acceptable exercise modality for wheelchair users with SCI. Session data on %HRpeak, RPE, and shoulder pain indicate that REMW evoked moderate to vigorous intensity exercise without exacerbation of shoulder pain. Future research is required to quantify potential training-induced changes in cardiorespiratory fitness.
Collapse
|
6
|
Ettema M, Brurok B, Baumgart JK. Test-Retest Reliability of Physiological Variables During Submaximal Seated Upper-Body Poling in Able-Bodied Participants. Front Physiol 2021; 12:749356. [PMID: 34916954 PMCID: PMC8669804 DOI: 10.3389/fphys.2021.749356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: To investigate the test–retest reliability of physiological variables across four different test days and four different submaximal exercise intensities during seated upper-body poling (UBP). Methods: Thirteen abled-bodied, upper-body trained men (age 29±3years; body mass 84±12kg; height 183±5cm) performed four submaximal 4-min stages of seated UBP on four separate test days. The four submaximal stages were set at individual power outputs corresponding to a rating of perceived exertion of 9, 11, 13, and 15. The absolute reliability for pairwise test-day comparisons of the physiological variables was investigated with the smallest detectable change percentage (%SDC) and the relative reliability with the interclass correlation coefficient (ICC). Results: Absolute and relative reliability across test-day comparisons and submaximal stages were moderate to excellent for all variables investigated (V̇O2 – %SDC range: 5–13%, ICC range: 0.93–0.99; HR – %SDC range: 6–9%, ICC range: 0.91–0.97) other than blood lactate, for which absolute reliability was poor and relative reliability highly variable (%SDC range: 26–69%, ICC range: 0.44–0.92). Furthermore, absolute and relative reliability were consistent across the low-to-moderate exercise intensity spectrum and across test days. Conclusion: Absolute and relative test–retest reliability were acceptable for all investigated physiological variables but blood lactate. The consistent test–retest reliability across the exercise intensity spectrum and across test days indicates that a familiarization period to the specific exercise modality may not be necessary. For generalizability, these findings need to be confirmed in athletes with a disability by future large-scale studies.
Collapse
Affiliation(s)
- Marlou Ettema
- Centre for Elite Sports Research, Department of Neuromedicine and Movement science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Berit Brurok
- Department of Physical Medicine and Rehabilitation, St. Olav's University Hospital, Trondheim, Norway
| | - Julia Kathrin Baumgart
- Centre for Elite Sports Research, Department of Neuromedicine and Movement science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|