1
|
Zhang Y, Qian M, Shao C, Fu L, Wu L, Qian R, Xu M, Lu J, Xu G, Yang G. Functional characterization of β-adrenergic-like octopamine receptors in planthopper reproduction and feeding. Int J Biol Macromol 2024; 288:138722. [PMID: 39672417 DOI: 10.1016/j.ijbiomac.2024.138722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
As an essential biogenic amine in invertebrates, octopamine (OA) regulates multiple physiological and behavioral processes via binding to octopamine receptors (OARs). The small brown planthopper Laodelphax striatellus is an important agricultural pest. However, little is known about OARs in L. striatellus. Herein, three β-adrenergic-like OARs (LsOA2s) were cloned, including LsOA2B1, LsOA2B2, and LsOA2B3. LsOA2s were expressed at the highest levels in egg stage and brain. Knockdown of LsOA2s significantly decreased the transcript levels of vitellogenin (LsVg) and Vg receptor (LsVgR), and reduced LsVg protein levels. LsOA2B2 knockdown shortened the oviposition period and inhibited the fecundity, while silencing LsOA2B1 and LsOA2B3 did not affect the reproduction performance including the preoviposition period, oviposition period, and fecundity. Ovary dissection indicated that LsOA2B2 knockdown decreased the ovary area and detained eggs. In addition, LsOA2s silencing prolonged the hatching period and reduced the hatching rate, and shortened the egg length on the fifth day of development. LsOA2B2 silencing also reduced egg width. Furthermore, LsOA2s knockdown decreased honeydew excretions of adults. Overall, these results provide evidence that LsOA2s play important roles in the reproduction and feeding behaviors of L. striatellus, and offer a reference for the exploration of potential molecular targets to control planthoppers.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Mingshi Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chenjia Shao
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Liran Fu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Liang Wu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Ruhao Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Meiqi Xu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jing Lu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Gang Xu
- College of Plant Protection, Yangzhou University, Yangzhou, China.
| | - Guoqing Yang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Lin J, Xiao D, Wu M, Chen X, Xu Q, Wang S, Zang L. Pleiotropic effects of Ebony on pigmentation and development in the Asian multi-coloured ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae). INSECT MOLECULAR BIOLOGY 2024. [PMID: 39513325 DOI: 10.1111/imb.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Melanin plays a pivotal role in insect body pigmentation, significantly contributing to their adaptation to diverse biotic and abiotic environmental challenges. Several genes involved in insect melanin synthesis showed pleiotropic effects on insect development and reproduction. Among these, the N-β-alanyl dopamine synthetase gene (Ebony) is integral to the pigmentation process. However, the full spectrum of its pleiotropic impacts is not yet thoroughly understood. In this study, we identified and characterised the HaEbony gene in the Asian multi-coloured ladybird beetle (Harmonia axyridis) and found that HaEbony gene is a conserved gene within the Coleoptera order. We aimed to further explore the multiple roles of HaEbony in the physiology and behaviour in H. axyridis. The CRISPR/Cas9 system was applied to generate multiple HaEbony knockout allele (HaEbony+/-), showing nucleotide deletion in the G0 and G1 generations. Remarkably, the resultant HaEbony+/- mutants consistently displayed darker pigmentation than their wild-type counterparts across larval, pupal and adult stages. Furthermore, these HaEbony+/- individuals (G0) demonstrated an enhanced predatory efficiency, evidenced by a higher number of aphids consumed compared to the wild type. A significant finding was the reduced egg hatchability in both G0 and G1 generations of the HaEbony+/- group, highlighting a potential reproductive fitness cost associated with HaEbony deficiency. In conclusion, our study not only sheds light on the multifaceted roles of HaEbony in H. axyridis but also highlights the potential of employing CRISPR/Cas9-targeted modifications of the Ebony gene. Such genetic interventions could enhance the environmental adaptability and predatory efficacy of ladybirds, presenting a novel strategy in biological control application.
Collapse
Affiliation(s)
- Jing Lin
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Da Xiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengmeng Wu
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xu Chen
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Qingxuan Xu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Su Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Liansheng Zang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Leyria J, Orchard I, Lange AB. Octopamine is required for successful reproduction in the classical insect model, Rhodnius prolixus. PLoS One 2024; 19:e0306611. [PMID: 38995904 PMCID: PMC11244822 DOI: 10.1371/journal.pone.0306611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
In insects, biogenic amines function as neurotransmitters, neuromodulators, and neurohormones, influencing various behaviors, including those related to reproduction such as response to sex pheromones, oogenesis, oviposition, courtship, and mating. Octopamine (OA), an analog of the vertebrate norepinephrine, is synthesized from the biogenic amine tyramine by the enzyme tyramine β-hydroxylase (TβH). Here, we investigate the mechanisms and target genes underlying the role of OA in successful reproduction in females of Rhodnius prolixus, a vector of Chagas disease, by downregulating TβH mRNA expression (thereby reducing OA content) using RNA interference (RNAi), and in vivo and ex vivo application of OA. Injection of females with dsTβH impairs successful reproduction at least in part, by decreasing the transcript expression of enzymes involved in juvenile hormone biosynthesis, the primary hormone for oogenesis in R. prolixus, thereby interfering with oogenesis, ovulation and oviposition. This study offers valuable insights into the involvement of OA for successful reproduction in R. prolixus females. Understanding the reproductive biology of R. prolixus is crucial in a medical context for controlling the spread of the disease.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
4
|
Tu S, Yu G, Ge F, Xu R, Jin Z, Xie X, Zhu D. Comparative transcriptomic characterization of the ovary in the spawning process of the mud crab Scylla paramamosain. Dev Growth Differ 2024; 66:274-284. [PMID: 38501505 DOI: 10.1111/dgd.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Oviposition is induced upon mating in most insects. Spawning is a physiological process that is fundamental for the reproduction of Scylla paramamosain. However, the molecular mechanisms underlying the spawning process in this species are poorly understood. Herein, comprehensive ovary transcriptomic analysis was conducted at the germinal vesicle breakdown stage (GVBD), spawning stage, 0.5 h post-spawning stage, and 24 h post-spawning stage of S. paramamosain for gene discovery. A total of 67,230 unigenes were generated, and 27,975 (41.61%) unigenes were annotated. Meanwhile, the differentially expressed genes (DEGs) between the different groups were identified, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was subsequently conducted. These results suggested that octopamine (OA) and tyramine (TA) could induce oviposition, while dopamine (DA) and serotonin (5-hydroxytryptamine [5-HT]) inhibit oviposition. The 20-hydroxyecdysone (20E) and methyl farnesoate (MF) signal pathways might be positively associated with oviposition. Furthermore, numerous transcripts that encode neuropeptides and their G-protein-coupled receptors (GPCRs), such as CNMamide, RYamide, ecdysis-triggering hormone (ETH), GPA2/GPB5 receptor, and Moody receptor, appear to be differentially expressed during the spawning process. Eleven unigenes were selected for qRT-PCR and the pattern was found to be consistent with the transcriptome expression pattern. Our work is the first spawning-related investigation of S. paramamosain focusing on the ovary at the whole transcriptome level. These findings assist in improving our understanding of spawning regulation in S. paramamosain and provide information for oviposition studies in other crustaceans.
Collapse
Affiliation(s)
- Shisheng Tu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Guohong Yu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Fuqiang Ge
- School of Marine Science, Ningbo University, Ningbo, China
| | - Rui Xu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zhongwen Jin
- Ningbo Ocean and Fisheries Research Institute of Zhejiang Province, Ningbo, China
| | - Xi Xie
- School of Marine Science, Ningbo University, Ningbo, China
| | - Dongfa Zhu
- School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Finetti L, Leyria J, Orchard I, Lange AB. Tyraminergic control of vitellogenin production and release in the blood-feeding insect, Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103948. [PMID: 37075904 DOI: 10.1016/j.ibmb.2023.103948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
In insects, the biogenic amine tyramine (TA) has been shown to control several physiological processes. Recently, the involvement of the type 1 tyramine receptor (TAR1) in reproductive processes has been demonstrated in different insects. Here, we investigate the putative role of Rhodnius prolixus TAR1 (RpTAR1) in reproduction in female R. prolixus. RpTAR1 transcript was highly expressed in tissues associated with egg development. Moreover, after a blood meal, which is the stimulus for full egg development, RpTAR1 transcript was upregulated in the ovaries and in the fat body. After RNAi-mediated RpTAR1 knockdown, an ovarian phenotype characterized by the absence or reduction of egg production was observed. Furthermore, protein and Vg accumulation in the fat body was observed, suggesting an impairment in protein release from the fat body into the hemolymph. However, even though fewer eggs were produced and laid, there was no difference in hatching ratio of those laid, in comparison to the controls, indicating that the overall low protein uptake by the ovaries did not influence the viability of individual eggs produced. Interestingly, the eggs from dsTAR1-treated insects appeared more red, indicating a higher content of RHBP compared to the control. A higher colocalization between Vg and Rab11, a marker for the recycling endosome pathway, was observed after dsTAR1 injection, suggesting that a more active lysosome degradation pathway in response to the Vg accumulation may occur. In addition to the Vg accumulation in the fat body, dsTAR1 treatment altered JH pathway. However, it remains to be elucidated whether this event is either directly related to the RpTAR1 downregulation or for a consequence to the Vg accumulation. Lastly, the RpTAR1 action on Vg synthesis and release in the fat body was monitored in the presence or absence of yohimbine, the antagonist of TAR1, in an ex-vivo experiment. Yohimbine antagonises the TAR1 stimulated release of Vg. These results provide critical information concerning the role of TAR1 in Vg synthesis and release in R. prolixus. Furthermore, this work opens the way for further investigation into innovative methods for controlling R. prolixus.
Collapse
Affiliation(s)
- Luca Finetti
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
6
|
Corrêa EJA, Carvalho FC, de Castro Oliveira JA, Bertolucci SKV, Scotti MT, Silveira CH, Guedes FC, Melo JOF, de Melo-Minardi RC, de Lima LHF. Elucidating the molecular mechanisms of essential oils' insecticidal action using a novel cheminformatics protocol. Sci Rep 2023; 13:4598. [PMID: 36944648 PMCID: PMC10028760 DOI: 10.1038/s41598-023-29981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Essential oils (EOs) are a promising source for novel environmentally safe insecticides. However, the structural diversity of their compounds poses challenges to accurately elucidate their biological mechanisms of action. We present a new chemoinformatics methodology aimed at predicting the impact of essential oil (EO) compounds on the molecular targets of commercial insecticides. Our approach merges virtual screening, chemoinformatics, and machine learning to identify custom signatures and reference molecule clusters. By assigning a molecule to a cluster, we can determine its most likely interaction targets. Our findings reveal that the main targets of EOs are juvenile hormone-specific proteins (JHBP and MET) and octopamine receptor agonists (OctpRago). Three of the twenty clusters show strong similarities to the juvenile hormone, steroids, and biogenic amines. For instance, the methodology successfully identified E-Nerolidol, for which literature points indications of disrupting insect metamorphosis and neurochemistry, as a potential insecticide in these pathways. We validated the predictions through experimental bioassays, observing symptoms in blowflies that were consistent with the computational results. This new approach sheds a higher light on the ways of action of EO compounds in nature and biotechnology. It also opens new possibilities for understanding how molecules can interfere with biological systems and has broad implications for areas such as drug design.
Collapse
Affiliation(s)
- Eduardo José Azevedo Corrêa
- Multicenter Program in Postgraduate in Biochemistry and Molecular Biology, Federal University of São João del-Rei, Campus Divinópolis, Divinópolis, MG, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Pitangui, MG, Brazil
| | - Frederico Chaves Carvalho
- Department of Computer Science, Institute of Exact Sciences-ICEx, Federal University of Minas Gerais, Campus Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Suzan Kelly Vilela Bertolucci
- Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, MG, Brazil
| | - Marcus Tullius Scotti
- Chemistry Department, Exact and Nature Sciences Center, Federal University of Paraiba, Campus I, João Pessoa, PB, Brazil
| | | | - Fabiana Costa Guedes
- Technological Sciences Institute, Federal University of Itajubá, Itabira, MG, Brazil
| | - Júlio Onésio Ferreira Melo
- Department of Exact and Biological Sciences, Federal University of São João Del-Rei, Sete Lagoas Campus, Sete Lagoas, MG, Brazil
| | - Raquel Cardoso de Melo-Minardi
- Department of Computer Science, Institute of Exact Sciences-ICEx, Federal University of Minas Gerais, Campus Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Leonardo Henrique França de Lima
- Multicenter Program in Postgraduate in Biochemistry and Molecular Biology, Federal University of São João del-Rei, Campus Divinópolis, Divinópolis, MG, Brazil.
- Department of Exact and Biological Sciences, Federal University of São João Del-Rei, Sete Lagoas Campus, Sete Lagoas, MG, Brazil.
| |
Collapse
|
7
|
Tsai Y, Lin YC, Lee YH. Octopamine-MAPK-SKN-1 signaling suppresses mating-induced oxidative stress in Caenorhabditis elegans gonads to protect fertility. iScience 2023; 26:106162. [PMID: 36876134 PMCID: PMC9976470 DOI: 10.1016/j.isci.2023.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/12/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Sexual conflict over mating is costly to female physiology. Caenorhabditis elegans hermaphrodites generally produce self-progeny, but they can produce cross-progeny upon successfully mating with a male. We have uncovered that C. elegans hermaphrodites experience sexual conflict over mating, resulting in severe costs in terms of their fertility and longevity. We show that reactive oxygen species (ROS) accumulate on the apical surfaces of spermathecal bag cells after successful mating and induce cell damage, leading to ovulation defects and fertility suppression. To counteract these negative impacts, C. elegans hermaphrodites deploy the octopamine (OA) regulatory pathway to enhance glutathione (GSH) biosynthesis and protect spermathecae from mating-induced ROS. We show that the SER-3 receptor and mitogen-activated protein kinase (MAPK) KGB-1 cascade transduce the OA signal to transcription factor SKN-1/Nrf2 in the spermatheca to upregulate GSH biosynthesis.
Collapse
Affiliation(s)
- Yu Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ying-Hue Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
8
|
Cressman A, Amsalem E. Impacts and mechanisms of CO2 narcosis in bumble bees: narcosis depends on dose, caste and mating status and is not induced by anoxia. J Exp Biol 2023; 226:286149. [PMID: 36541091 DOI: 10.1242/jeb.244746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Carbon dioxide (CO2) is commonly used to immobilize insects and to induce reproduction in bees. However, despite its wide use and potential off-target impacts, its underlying mechanisms are not fully understood. Here, we used Bombus impatiens to examine whether CO2 impacts are mediated by anoxia and whether these mechanisms differ between female castes or following mating in queens. We examined the behavior, physiology and gene expression of workers, mated queens and virgin queens following exposure to anoxia, hypoxia, full and partial hypercapnia, and controls. Hypercapnia and anoxia caused immobilization, but only hypercapnia resulted in behavioral, physiological and molecular impacts in bees. Recovery from hypercapnia resulted in increased abdominal contractions and took longer in queens. Additionally, hypercapnia activated the ovaries of queens, but inhibited those of workers in a dose-dependent manner and caused a depletion of fat-body lipids in both castes. All responses to hypercapnia were weaker following mating in queens. Analysis of gene expression related to hypoxia and hypercapnia supported the physiological findings in queens, demonstrating that the overall impacts of CO2, excluding virgin queen ovaries, were unique and were not induced by anoxia. This study contributes to our understanding of the impacts and the mechanistic basis of CO2 narcosis in insects and its impacts on bee physiology. This article has an associated ECR Spotlight interview with Anna Cressman.
Collapse
Affiliation(s)
- Anna Cressman
- Department of Entomology, Center for Chemical Ecology, Center for Pollination Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollination Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Molecular and Pharmacological Characterization of β-Adrenergic-like Octopamine Receptors in the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). Int J Mol Sci 2022; 23:ijms232314513. [PMID: 36498840 PMCID: PMC9740559 DOI: 10.3390/ijms232314513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Octopamine (OA) is structurally and functionally similar to adrenaline/noradrenaline in vertebrates, and OA modulates diverse physiological and behavioral processes in invertebrates. OA exerts its actions by binding to specific octopamine receptors (OARs). Functional and pharmacological characterization of OARs have been investigated in several insects. However, the literature on OARs is scarce for parasitoids. Here we cloned three β-adrenergic-like OARs (CcOctβRs) from Cotesia chilonis. CcOctβRs share high similarity with their own orthologous receptors. The transcript levels of CcOctβRs were varied in different tissues. When heterologously expressed in CHO-K1 cells, CcOctβRs induced cAMP production, and were dose-dependently activated by OA, TA and putative octopaminergic agonists. Their activities were inhibited by potential antagonists and were most efficiently blocked by epinastine. Our study offers important information about the molecular and pharmacological properties of β-adrenergic-like OARs from C. chilonis that will provide the basis to reveal the contribution of individual receptors to the physiological processes and behaviors in parasitoids.
Collapse
|
10
|
Knapp RA, Norman VC, Rouse JL, Duncan EJ. Environmentally responsive reproduction: neuroendocrine signalling and the evolution of eusociality. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100951. [PMID: 35863739 PMCID: PMC9586883 DOI: 10.1016/j.cois.2022.100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 05/12/2023]
Abstract
Eusociality is a rare but successful life-history strategy that is defined by the reproductive division of labour. In eusocial species, most females forgo their own reproduction to support that of a dominant female or queen. In many eusocial insects, worker reproduction is inhibited via dominance hierarchies or by pheromones produced by the queen and her brood. Here, we consider whether these cues may act as generic 'environmental signals', similar to temperature or nutrition stress, which induce a state of reproductive dormancy in some solitary insects. We review the recent findings regarding the mechanisms of reproductive dormancy in insects and highlight key gaps in our understanding of how environmental cues inhibit reproduction.
Collapse
Affiliation(s)
- Rosemary A Knapp
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Victoria C Norman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James L Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
11
|
Chen W, Chen Y, Xiao Z, Zhang Y, Zhang T, Zhong G, Yi X. The modulatory effects of biogenic amines on male mating performance in Bactrocera dorsalis. Front Physiol 2022; 13:1000547. [PMID: 36148306 PMCID: PMC9486026 DOI: 10.3389/fphys.2022.1000547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
In insects, the emergence of mating behavior requires the interplay among sex-determination hierarchy mechanisms that regulate sex-specific differentiation, perception and integration of different sensory cues, and precisely patterned behavioral outputs. Biogenic amines, including octopamine (OA), dopamine (DA), tyramine (TA), serotonin and histamine, have been identified and proposed as putative neurotransmitters, neurohormones and/or neuromodulators in the central nervous system of insects to influence multiple physiologies and behaviors. The current study provides the physiological roles and pharmacology of these biogenic amines in the mating performance of Bactrocera dorsalis. Silencing gene expressions coding for biosynthetic enzymes of DA and serotonin in male flies could decrease mating rates, while OA, TA and histamine had no such effects on mating. Furthermore, injection of DA or the DA receptor antagonist chlorpromazine could affect mating rate, as well as injection of serotonin. Pharmacological treatments with other biogenic amines or their receptor antagonists in male flies have no roles in regulating mating performance. We conclude that DA and its receptors are involved in regulating male mating behaviors in B. dorsalis, while changes in serotonin levels in male flies could also affect mating rates. In the current study, the modulatory effects of these biogenic amines on mating performance were investigated, and these results will be helpful in providing a new strategy for controlling B. dorsalis.
Collapse
Affiliation(s)
- Wenlong Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ziwei Xiao
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yuhua Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Liu D, Zhang X, Chiqin F, Nyamwasa I, Cao Y, Yin J, Zhang S, Feng H, Li K. Octopamine modulates insect mating and Oviposition. J Chem Ecol 2022; 48:628-640. [PMID: 35687218 DOI: 10.1007/s10886-022-01366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
Abstract
The neuro-mechanisms that regulate insect reproduction are not fully understood. Biogenic amines, including octopamine, are neuromodulators that have been shown to modulate insect reproduction in various ways, e.g., promote or inhibit insect mating or oviposition. In this study, we examined the role of octopamine in regulating the reproduction behaviors of a devastating underground insect pest, the dark black chafer (Holotrichia parallela). We first measured the abundance of octopamine in different neural tissues of the adult chafer pre- and post-mating, demonstrating that octopamine decreased in the abdominal ganglia of females but increased in males post-mating. We then fed the adult H. parallela with a concentration gradient of octopamine to test the effects on insect reproductive behaviors. Compared with its antagonist mianserin, octopamine at the concentration of 2 µg/mL resulted in the highest increase in males' preference for sex pheromone and females' oviposition, whereas the mianserin-treatment increased the survival rate and prolonged the lifespan of H. parallela. In addition, we did not observe significant differences in egg hatchability between octopamine and mianserin-treated H. parallela. Our results demonstrated that octopamine promotes H. parallela mating and oviposition with a clear low dosage effect, illustrated how neural substrates modulate insect behaviors, and provided insights for applying octopamine in pest management.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Xinxin Zhang
- Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Fang Chiqin
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Innocent Nyamwasa
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yazhong Cao
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Jiao Yin
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Shuai Zhang
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Honglin Feng
- Boyce Thompson Institute, 14853, Ithaca, NewYork, USA.
| | - Kebin Li
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| |
Collapse
|
13
|
Sisterson MS, Brent CS. Nutritional and Physiological Regulation of Glassy-Winged Sharpshooter Oogenesis. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:526-538. [PMID: 35024833 DOI: 10.1093/jee/toab260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 06/14/2023]
Abstract
The glassy-winged sharpshooter (Homalodisca vitripennis (Germar); Hemiptera: Cicadellidae: Cicadellinae) is an invasive insect that transmits the plant pathogenic bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadacae). While adult glassy-winged sharpshooter must feed to produce eggs, the role of nutritional status on initiating oogenesis is poorly understood. To determine the effects of glassy-winged sharpshooter nutrition on nymphal development, oogenesis, and fecundity, glassy-winged sharpshooter were reared on cowpea, sunflower, sorghum, and a mixture of the three plant species. Adults emerging from cowpea, sunflower, or plant mixture treatments had shorter development times, attained larger size, and had greater estimated lipid reserves than females reared on sorghum. In choice tests, nymphs avoided sorghum and preferentially fed on cowpea and sunflower. Adult females provisioned with a single plant species during the nymphal stage were provided with either the same host plant species or a mixture of host plant species (cowpea, sunflower, sorghum) for a 9-wk oviposition period, with 37% of females initiating oogenesis. Ovipositing females had greater juvenile hormone and octopamine levels than reproductively inactive females, although topical application of the juvenile hormone analog Methoprene did not promote oogenesis. Across nymphal diets, reproductively active females produced more eggs when held on plant mixtures than on single plant species. In choice tests, adult females were observed most frequently on cowpea, although most eggs were deposited on sorghum, the host least preferred by nymphs. Results suggest that fecundity is largely determined by the quality of the adult diet, although the stimulus that initiates oogenesis does not appear to be related to nutrition.
Collapse
Affiliation(s)
- Mark S Sisterson
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Colin S Brent
- USDA, Agricultural Research Service, Maricopa, AZ, USA
| |
Collapse
|
14
|
Vyas M, Parepally SK, Kamala Jayanthi PD. Is the Natural Instinct to Oviposit in Mated Female Oriental Fruit Fly, Bactrocera dorsalis More of a Brain-Independent Act? Front Physiol 2022; 13:800441. [PMID: 35360250 PMCID: PMC8964073 DOI: 10.3389/fphys.2022.800441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
What physiological and neuro-molecular changes control the female oviposition behavior post-mating in insects? The molecular changes that occur in a gravid female insect are difficult to dissect out considering the distinct behavioral patterns displayed by different insect groups. To understand the role of the brain center in Oriental fruit fly, Bactrocera dorsalis oviposition, egg-laying behavior was analyzed in γ-octalactone exposed, decapitated mated B. dorsalis females. Interestingly, the females displayed a possible urge to oviposit, which suggests a natural instinct to pass on the gene pool. Expression analysis of certain genes involved in oviposition behavior was also carried out in these insects to explore the molecular aspects of such behavior. This study tries to assess the involvement of brain center in egg-laying and also explore the role of certain neurotransmitter-related receptors in decapitated B. dorsalis oviposition behavior. Our results indicate that B. dorsalis oviposition behavior could potentially have a bypass route of neuronal control devoid of the brain. The study reported here establishes that decapitation in gravid females fails to abolish their ability to sense ovipositional cues and also to oviposit.
Collapse
|
15
|
Zhang YJ, Jiang L, Ahamd S, Chen Y, Zhang JY, Stanley D, Miao H, Ge LQ. The octopamine receptor, OA2B2, modulates stress resistance and reproduction in Nilaparvata lugens Stål (Hemiptera: Delphacidae). INSECT MOLECULAR BIOLOGY 2022; 31:33-48. [PMID: 34480382 DOI: 10.1111/imb.12736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål) is a resurgent pest of rice crops throughout Asia. We recently discovered that octopamine (OA) and OA2B2 operate in the BPH mating system, where it mediates a wide range of molecular, physiological and behavioural changes. Here, we report on outcomes of experiments designed to test the hypothesis that OA/OA2B2 signalling mediates responses to three abiotic stressors, starvation, high temperature (37 °C), and induced oxidative stress. We found per os RNAi-mediated OA2B2 silencing led to significantly decreased survival, measured in days, following exposure to each of these stressors. We selected a biologically costly process, reproductive biology, as a biotic stressor. Silencing of OA2B2 led to decreased total protein content in ovaries and fat bodies, downregulated expression of vitellogenin (Vg) and Vg receptor (VgR), inhibited fat body Vg protein synthesis, shortened the oviposition period, prolonged the preoviposition period, reduced the number of laid eggs, body weight and female longevity. In addition, the silencing treatments also led to inhibited ovarian development, and ovarian Vg uptake, reduced numbers of egg masses and offspring and lower hatching rates and population growth index. These data support our hypothesis that OA2B2 acts in mediating BPH resistance to biotic and abiotic stressors.
Collapse
Affiliation(s)
- Y J Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - L Jiang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - S Ahamd
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Y Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - J Y Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - D Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO, USA
| | - H Miao
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - L Q Ge
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
16
|
White MA, Chen DS, Wolfner MF. She's got nerve: roles of octopamine in insect female reproduction. J Neurogenet 2021; 35:132-153. [PMID: 33909537 DOI: 10.1080/01677063.2020.1868457] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The biogenic monoamine octopamine (OA) is a crucial regulator of invertebrate physiology and behavior. Since its discovery in the 1950s in octopus salivary glands, OA has been implicated in many biological processes among diverse invertebrate lineages. It can act as a neurotransmitter, neuromodulator and neurohormone in a variety of biological contexts, and can mediate processes including feeding, sleep, locomotion, flight, learning, memory, and aggression. Here, we focus on the roles of OA in female reproduction in insects. OA is produced in the octopaminergic neurons that innervate the female reproductive tract (RT). It exerts its effects by binding to receptors throughout the RT to generate tissue- and region-specific outcomes. OA signaling regulates oogenesis, ovulation, sperm storage, and reproductive behaviors in response to the female's internal state and external conditions. Mating profoundly changes a female's physiology and behavior. The female's OA signaling system interacts with, and is modified by, male molecules transferred during mating to elicit a subset of the post-mating changes. Since the role of OA in female reproduction is best characterized in the fruit fly Drosophila melanogaster, we focus our discussion on this species but include discussion of OA in other insect species whenever relevant. We conclude by proposing areas for future research to further the understanding of OA's involvement in female reproduction in insects.
Collapse
Affiliation(s)
- Melissa A White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
Zhu JY, Xiang ZW, Zhang SZ, Kang ZW, Fan YL, Liu TX. A new pest management strategy: transforming a non-host plant into a dead-end trap crop for the diamondback moth Plutella xylostella L. PEST MANAGEMENT SCIENCE 2021; 77:1094-1101. [PMID: 33009890 DOI: 10.1002/ps.6126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/13/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The use of trap crops can reduce the egg production of female Plutella xylostella in cruciferous vegetables and is an effective method for controlling this pest. To date, most of the trap plants that have been studied are cruciferous plants containing high concentrations of glucosinolates, which are more attractive to P. xylostella female adults. However, the application of these trap plants also has some limitations. Studies have shown that aqueous extracts of cruciferous plants can attract P. xylostella to lay eggs. In this study, we utilized the extract of Chinese kale to treat a non-host plant, the faba bean, and evaluated the possibility of using it as a dead-end trap plant for P. xylostella control. RESULTS Plutella xylostella females laid significantly more eggs on faba beans that had been sprayed with the extract of Chinese kale rather than on Chinese kale itself. The first instar larvae of P. xylostella failed to survive on faba beans. Notably, the faba beans with the Chinese kale extract had the strongest attraction effect on P. xylostella females when placed 3 m away from the Chinese kale. Moreover, this attraction effect of faba beans on P. xylostella for oviposition lasted for up to 15 days. CONCLUSION Faba bean plants sprayed with the aqueous extract of Chinese kale represent a potential dead-end trap plant for P. xylostella adults and their oviposition while being invariably deadly for their offspring. The present study provides a new proof of concept of using a non-cruciferous trap plant for P. xylostella management.
Collapse
Affiliation(s)
- Jing-Yun Zhu
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zhong-Wen Xiang
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zhi-Wei Kang
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Assessment of Insecticidal Activity of Benzylisoquinoline Alkaloids from Chilean Rhamnaceae Plants against Fruit-Fly Drosophila melanogaster and the Lepidopteran Crop Pest Cydia pomonella. Molecules 2020; 25:molecules25215094. [PMID: 33153001 PMCID: PMC7663414 DOI: 10.3390/molecules25215094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
The Chilean plants Discaria chacaye, Talguenea quinquenervia (Rhamnaceae), Peumus boldus (Monimiaceae), and Cryptocarya alba (Lauraceae) were evaluated against Codling moth: Cydia pomonella L. (Lepidoptera: Tortricidae) and fruit fly Drosophila melanogaster (Diptera: Drosophilidae), which is one of the most widespread and destructive primary pests of Prunus (plums, cherries, peaches, nectarines, apricots, almonds), pear, walnuts, and chestnuts, among other. Four benzylisoquinoline alkaloids (coclaurine, laurolitsine, boldine, and pukateine) were isolated from the above mentioned plant species and evaluated regarding their insecticidal activity against the codling moth and fruit fly. The results showed that these alkaloids possess acute and chronic insecticidal effects. The most relevant effect was observed at 10 µg/mL against D. melanogaster and at 50 µg/mL against C. pomonella, being the alteration of the feeding, deformations, failure in the displacement of the larvae in the feeding medium of D. melanogaster, and mortality visible effects. In addition, the docking results show that these type of alkaloids present a good interaction with octopamine and ecdysone receptor showing a possible action mechanism.
Collapse
|