1
|
Möller M, Orrico F, Villar S, López AC, Silva N, Donzé M, Thomson L, Denicola A. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells. ACS OMEGA 2023; 8:147-168. [PMID: 36643550 PMCID: PMC9835686 DOI: 10.1021/acsomega.2c06768] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
Red blood cells (RBCs) are exposed to both external and internal sources of oxidants that challenge their integrity and compromise their physiological function and supply of oxygen to tissues. Autoxidation of oxyhemoglobin is the main source of endogenous RBC oxidant production, yielding superoxide radical and then hydrogen peroxide. In addition, potent oxidants from other blood cells and the surrounding endothelium can reach the RBCs. Abundant and efficient enzymatic systems and low molecular weight antioxidants prevent most of the damage to the RBCs and also position the RBCs as a sink of vascular oxidants that allow the body to maintain a healthy circulatory system. Among the antioxidant enzymes, the thiol-dependent peroxidase peroxiredoxin 2, highly abundant in RBCs, is essential to keep the redox balance. A great part of the RBC antioxidant activity is supported by an active glucose metabolism that provides reducing power in the form of NADPH via the pentose phosphate pathway. There are several RBC defects and situations that generate oxidative stress conditions where the defense mechanisms are overwhelmed, and these include glucose-6-phosphate dehydrogenase deficiencies (favism), hemoglobinopathies like sickle cell disease and thalassemia, as well as packed RBCs for transfusion that suffer from storage lesions. These oxidative stress-associated pathologies of the RBCs underline the relevance of redox balance in these anucleated cells that lack a mechanism of DNA-inducible antioxidant response and rely on a complex and robust network of antioxidant systems.
Collapse
Affiliation(s)
- Matias
N. Möller
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Florencia Orrico
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Sebastián
F. Villar
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Ana C. López
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Nicolás Silva
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
- Departamento
de Medicina Transfusional, Hospital de Clínicas, Facultad de
Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Marcel Donzé
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Leonor Thomson
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Ana Denicola
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
2
|
Božič B, Svetina S. Membrane Localization of Piezo1 in the Context of Its Role in the Regulation of Red Blood Cell Volume. Front Physiol 2022; 13:879038. [PMID: 35669579 PMCID: PMC9163432 DOI: 10.3389/fphys.2022.879038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Piezo1 is a membrane nonspecific cation channel involved in red blood cells (RBCs) in the regulation of their volume. Recently, it was shown that it is distributed on the RBC membrane in a nonuniform manner. Here it is shown that it is possible to interpret the lateral distribution of Piezo1 molecules on RBC membrane by the curvature dependent Piezo1—bilayer interaction which is the consequence of the mismatch between the intrinsic principal curvatures of the Piezo1 trimer and the principal curvatures of the membrane at Piezo1′s location but without its presence. This result supports the previously proposed model for the role of Piezo1 in the regulation of RBC volume.
Collapse
Affiliation(s)
- Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Saša Svetina
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
- *Correspondence: Saša Svetina,
| |
Collapse
|
3
|
Sugiyama H, Osaki T, Takeuchi S, Toyota T. Role of Negatively Charged Lipids Achieving Rapid Accumulation of Water-Soluble Molecules and Macromolecules into Cell-Sized Liposomes against a Concentration Gradient. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:112-121. [PMID: 34967642 DOI: 10.1021/acs.langmuir.1c02103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liposomes, molecular self-assemblies resembling biological membranes, are a promising scaffold to investigate the physicochemical logic behind the complexity of living cells. Despite elaborate synthetic studies constructing cell-like chemical systems using liposomes, less attention has been paid to the proactive role of the membrane emerging as dynamics of the molecular self-assembly. This study investigated the liposomes containing anionic phospholipids by exposing them to steady flow conditions using a newly constructed automatic microfluidic observation platform. We demonstrated that the liposomes accumulated even macromolecules under the microfluidic condition without pore formation. By investigating the effect of composition of liposomes and visualizing negatively charged phospholipids upon the flow, we presumed that the external flow caused a compositional asymmetry of anionic phospholipids between the inner/outer leaflets, and the asymmetry enabled a rapid accumulation of those molecules against the concentration gradient. The current study opens new research interests regarding the nature of biological membranes under steady flow conditions.
Collapse
Affiliation(s)
- Hironori Sugiyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshihisa Osaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa 213-0012, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Yamaguchi Y, Allegrini B, Rapetti-Mauss R, Picard V, Garçon L, Kohl P, Soriani O, Peyronnet R, Guizouarn H. Hereditary Xerocytosis: Differential Behavior of PIEZO1 Mutations in the N-Terminal Extracellular Domain Between Red Blood Cells and HEK Cells. Front Physiol 2021; 12:736585. [PMID: 34737711 PMCID: PMC8562563 DOI: 10.3389/fphys.2021.736585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Hereditary Xerocytosis, a rare hemolytic anemia, is due to gain of function mutations in PIEZO1, a non-selective cation channel activated by mechanical stress. How these PIEZO1 mutations impair channel function and alter red blood cell (RBC) physiology, is not completely understood. Here, we report the characterization of mutations in the N-terminal part of the protein (V598M, F681S and the double mutation G782S/R808Q), a part of the channel that was subject of many investigations to decipher its role in channel gating. Our data show that the electrophysiological features of these PIEZO1 mutants expressed in HEK293T cells are different from previously characterized PIEZO1 mutations that are located in the pore or at the C-terminal extracellular domain of the protein. Although RBC with PIEZO1 mutations showed a dehydrated phenotype, the activity of V598M, F681S or R808Q in response to stretch was not significantly different from the WT channels. In contrast, the G782S mutant showed larger currents compared to the WT PIEZO1. Interestingly, basal activity of all the mutated channels was not significantly altered at the opposite of what was expected according to the decreased water and cation contents of resting RBC. In addition, the features of mutant PIEZO1 expressed in HEK293 cells do not always correlate with the observation in RBC where PIEZO1 mutations induced a cation leak associated with an increased conductance. Our work emphasizes the role of the membrane environment in PIEZO1 activity and the need to characterize RBC permeability to assess pathogenicity to PIEZO1 mutants associated with erythrocyte diseases.
Collapse
Affiliation(s)
- Yohei Yamaguchi
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Benoit Allegrini
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | | | - Véronique Picard
- Université Paris Sud-Paris Saclay, Faculté de Pharmacie, Service d'Hématologie Biologique, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | - Loïc Garçon
- Université Picardie Jules Verne, EA 4666, Service d'Hématologie Biologique, CHU, Amiens, France
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Olivier Soriani
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Hélène Guizouarn
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
5
|
The prognostic value of Piezo1 in breast cancer patients with various clinicopathological features. Anticancer Drugs 2021; 32:448-455. [PMID: 33559992 DOI: 10.1097/cad.0000000000001049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of piezo-type mechanosensitive ion channel component 1 (Piezo1) in sensing extracellular mechanical stress have been well investigated. Recently, Piezo1's vital role in cancerogenesis has been demonstrated by many studies. Nonetheless, the prognostic value of Piezo1 in cancer still remains unexplored and unclear. This article aims to investigate the prognostic value of Piezo1 in breast cancer. Human Protein Atlas and the Cancer Genome Atlas (TCGA) databases were used to examine Piezo1 expression in different human tissues and human cell lines. The discrepancies of Piezo1 mRNA expression in breast cancer patients with different clinicopathological features were assessed using bc-GenExMiner. The prognostic value of Piezo1 in breast cancer patients was evaluated using Kaplan-Meier plotter. Piezo1 mRNA was extensively expressed in human tissues and cell lines, particularly in breast and cancerous breast cancer cell line MCF7. High Piezo1 expression was found correlated with poor prognosis of breast cancer. Survival analysis further confirmed unfavorable prognosis of high Piezo1 expression in breast cancer patients with lymph node positive, estrogen receptor positive, Grade 2 (Scarff-Bloom-Richardson grading system), luminal A, and human epidermal growth factor receptor 2 overexpression, respectively. This study suggested that Piezo1 can serve as a prognostic indicator of breast cancer.
Collapse
|