1
|
Lim L, Kim H, Jeong J, Han SH, Yu YB, Song H. Yohimbine Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation and Migration via FOXO3a Factor. Int J Mol Sci 2024; 25:6899. [PMID: 39000009 PMCID: PMC11240894 DOI: 10.3390/ijms25136899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Yohimbine (YHB) has been reported to possess anti-inflammatory, anticancer, and cardiac function-enhancing properties. Additionally, it has been reported to inhibit the proliferation, migration, and neointimal formation of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor (PDGF) stimulation by suppressing the phospholipase C-gamma 1 pathway. However, the transcriptional regulatory mechanism of YHB controlling the behavior of VSMCs is not fully understood. In this study, YHB downregulated the expression of cell cycle regulatory proteins, such as proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin-dependent kinase 4 (CDK4), and cyclin E, by modulating the transcription factor FOXO3a in VSMCs induced by PDGF. Furthermore, YHB decreased p-38 and mTOR phosphorylation in a dose-dependent manner. Notably, YHB significantly reduced the phosphorylation at Y397 and Y925 sites of focal adhesion kinase (FAK), and this effect was greater at the Y925 site than Y397. In addition, the expression of paxillin, a FAK-associated protein known to bind to the Y925 site of FAK, was significantly reduced by YHB treatment in a dose-dependent manner. A pronounced reduction in the migration and proliferation of VSMCs was observed following co-treatment of YHB with mTOR or p38 inhibitors. In conclusion, this study shows that YHB inhibits the PDGF-induced proliferation and migration of VSMCs by regulating the transcription factor FOXO3a and the mTOR/p38/FAK signaling pathway. Therefore, YHB may be a potential therapeutic candidate for preventing and treating cardiovascular diseases such as atherosclerosis and vascular restenosis.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Forkhead Box Protein O3/metabolism
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Animals
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Phosphorylation/drug effects
- Yohimbine/pharmacology
- Rats
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
- Focal Adhesion Kinase 1/metabolism
- Cells, Cultured
- Paxillin/metabolism
- Rats, Sprague-Dawley
- Male
Collapse
Affiliation(s)
- Leejin Lim
- Advanced Cancer Controlling Research Center, Chosun University, Gwangju 61452, Republic of Korea
| | - Hyeonhwa Kim
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju 61452, Republic of Korea
| | - Jihye Jeong
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju 61452, Republic of Korea
| | - Sung Hee Han
- Institute of Human Behavior & Genetics, Biomedical Research Center, Korea University, Seoul 02841, Republic of Korea
| | - Young-Bob Yu
- Department of Paramedicine, Nambu University, Gwangju 62271, Republic of Korea
| | - Heesang Song
- Advanced Cancer Controlling Research Center, Chosun University, Gwangju 61452, Republic of Korea
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju 61452, Republic of Korea
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Chiu CW, Hsieh CY, Yang CH, Tsai JH, Huang SY, Sheu JR. Yohimbine, an α2-Adrenoceptor Antagonist, Suppresses PDGF-BB-Stimulated Vascular Smooth Muscle Cell Proliferation by Downregulating the PLCγ1 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23148049. [PMID: 35887391 PMCID: PMC9324260 DOI: 10.3390/ijms23148049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Yohimbine (YOH) has antiproliferative effects against breast cancer and pancreatic cancer; however, its effects on vascular proliferative diseases such as atherosclerosis remain unknown. Accordingly, we investigated the inhibitory mechanisms of YOH in vascular smooth muscle cells (VSMCs) stimulated by platelet-derived growth factor (PDGF)-BB, a major mitogenic factor in vascular diseases. YOH (5–20 μM) suppressed PDGF-BB-stimulated a mouse VSMC line (MOVAS-1 cell) proliferation without inducing cytotoxicity. YOH also exhibited antimigratory effects and downregulated matrix metalloproteinase-2 and -9 expression in PDGF-BB-stimulated MOVAS-1 cells. It also promoted cell cycle arrest in the initial gap/first gap phase by upregulating p27Kip1 and p53 expression and reducing cyclin-dependent kinase 2 and proliferating cell nuclear antigen expression. We noted phospholipase C-γ1 (PLCγ1) but not ERK1/2, AKT, or p38 kinase phosphorylation attenuation in YOH-modulated PDGF-BB-propagated signaling pathways in the MOVAS-1 cells. Furthermore, YOH still inhibited PDGF-BB-induced cell proliferation and PLCγ1 phosphorylation in MOVAS-1 cells with α2B-adrenergic receptor knockdown. YOH (5 and 10 mg/kg) substantially suppressed neointimal hyperplasia in mice subjected to CCA ligation for 21 days. Overall, our results reveal that YOH attenuates PDGF-BB-stimulated VSMC proliferation and migration by downregulating a α2B-adrenergic receptor–independent PLCγ1 pathway and reduces neointimal formation in vivo. Therefore, YOH has potential for repurposing for treating atherosclerosis and other vascular proliferative diseases.
Collapse
Affiliation(s)
- Chih-Wei Chiu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-H.Y.); (J.-H.T.)
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-H.Y.); (J.-H.T.)
| | - Jie-Heng Tsai
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-H.Y.); (J.-H.T.)
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (S.-Y.H.); (J.-R.S.); Tel.: +886-2-2736-1661 (ext. 6543) (S.-Y.H.); +886-2-2736-1661 (ext. 3199) (J.-R.S.)
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-H.Y.); (J.-H.T.)
- Correspondence: (S.-Y.H.); (J.-R.S.); Tel.: +886-2-2736-1661 (ext. 6543) (S.-Y.H.); +886-2-2736-1661 (ext. 3199) (J.-R.S.)
| |
Collapse
|
3
|
Jin J, Li F, Fan C, Wu Y, He C. Elevated mir-145-5p is associated with skeletal muscle dysfunction and triggers apoptotic cell death in C2C12 myotubes. J Muscle Res Cell Motil 2022; 43:135-145. [PMID: 35753017 DOI: 10.1007/s10974-022-09624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
Skeletal muscle dysfunction is a common comorbidity of chronic obstructive pulmonary disease (COPD), and the molecular mechanisms regarding to the pathogenesis of this disease have not been elucidated. In this study, a novel miR-145-5p was significantly upregulated in the serum collected from patients with COPD-associated muscle atrophy, in contrast with the normal participants. Then, we evidenced that silencing of miR-145-5p suppressed cell death and elongated cell survival during cell culture process. Consistently, upregulation of miR-145-5p induced cell apoptosis and restrain cell viability in the C2C12 cells, suggesting that miR-145-5p contributes to cell death. Further experiments evidenced that miR-145-5p decreased the expression levels of phosphorylated PI3K (p-PI3K), Akt (p-Akt) and mTOR (p-mTOR) to inactivate the PI3K/Akt/mTOR pathway, and this pathway was also reactivated by miR-145-5p ablation. Finally, we proved that the protective effects of miR-145-5p ablation were abrogated by co-treating cells with PI3K inhibitor LY294002. Taken together, we concluded that miR-145-5p promoted cell death to facilitate muscle dysfunctions via inactivating the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jing Jin
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Fanyi Li
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Caihong Fan
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Yu Wu
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Chunhui He
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
4
|
Lv J, Li X, Wu H, Li J, Luan B, Li Y, Li Y, Yang D, Wen H. Icariside II Restores Vascular Smooth Muscle Cell Contractile Phenotype by Enhancing the Focal Adhesion Signaling Pathway in the Rat Vascular Remodeling Model. Front Pharmacol 2022; 13:897615. [PMID: 35770073 PMCID: PMC9234455 DOI: 10.3389/fphar.2022.897615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotypic transition represents the fundamental pathophysiological alteration in the vascular remodeling process during the initiation and progression of cardiovascular diseases. Recent studies have revealed that Icariside II (ICS-II), a flavonol glycoside derived from the traditional Chinese medicine Herba Epimedii, exhibited therapeutic effects in various cardiovascular diseases. However, the therapeutic efficacy and underlying mechanisms of ICS-II regarding VSMC phenotypic transition were unknown. In this study, we investigated the therapeutic effects of ICS-Ⅱ on vascular remodeling with a rat’s balloon injury model in vivo. The label-free proteomic analysis was further implemented to identify the differentially expressed proteins (DEPs) after ICS-II intervention. Gene ontology and the pathway enrichment analysis were performed based on DEPs. Moreover, platelet-derived growth factor (PDGF-BB)-induced primary rat VSMC was implemented to verify the restoration effects of ICS-II on the VSMC contractile phenotype. Results showed that ICS-II could effectively attenuate the vascular remodeling process, promote SMA-α protein expression, and inhibit OPN expression in vivo. The proteomic analysis identified 145 differentially expressed proteins after ICS-II intervention. Further, the bioinformatics analysis indicated that the focal adhesion signaling pathway was enriched in the ICS-II group. In vitro studies showed that ICS-II suppressed VSMC proliferation and migration, and promoted VSMC contractile phenotype by modulating the focal adhesion signaling pathway. Taken together, our results suggest that ICS-II attenuates the vascular remodeling process and restores the VSMC contractile phenotype by promoting the focal adhesion pathway.
Collapse
Affiliation(s)
- Junyuan Lv
- Breast and Thyroid Surgery, Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xintong Li
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jiayang Li
- Drug Clinical Trial Institution, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Boyang Luan
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiqi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yeli Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Danli Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hao Wen
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Hao Wen,
| |
Collapse
|
5
|
Lim L, Ki YJ, Kim H, Chu B, Choi IY, Choi DH, Song H. Plantamajoside Attenuates Neointima Formation via Upregulation of Tissue Inhibitor of Metalloproteinases in Balloon-Injured Rats. J Med Food 2022; 25:503-512. [PMID: 35483086 DOI: 10.1089/jmf.2021.k.0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The abnormal change of vascular smooth muscle cell (VSMC) behavior is an important cellular event leading to neointimal hyperplasia in atherosclerosis and restenosis. Plantamajoside (PMS), a phenylethanoid glycoside compound of the Plantago asiatica, has been reported to have anti-inflammatory, antioxidative, and anticancer activities. In this study, the protective effects of PMS against intimal hyperplasia and the mechanisms underlying the regulation of VSMC behavior were investigated. MTT and BrdU assays were performed to evaluate the cytotoxicity and cell proliferative activity of PMS, respectively. Rat aortic VSMC migrations after treatment with the determined concentration of PMS (50 and 150 μM) were evaluated using wound healing and Boyden chamber assays. The inhibitory effects of PMS on intimal hyperplasia were evaluated in balloon-injured (BI) rat carotid artery. PMS suppressed the proliferation in platelet-derived growth factor-BB-induced VSMC, as confirmed from the decrease in cyclin-dependent kinase (CDK)-2, CDK-4, cyclin D1, and proliferating cell nuclear antigen levels. PMS also inhibited VSMC migration, consistent with the downregulated expression and zymolytic activities of matrix metalloproteinase (MMP)2, MMP9, and MMP13. PMS specifically regulated MMP expression through p38 mitogen-activated protein kinase and focal adhesion kinase pathways. Tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2 levels were upregulated via Smad1. TIMPs inhibited the conversion of pro-MMPs to active MMPs. PMS significantly inhibited neointimal formation in BI rat carotid arteries. In conclusion, PMS inhibits VSMC proliferation and migration by upregulating TIMP1 and TIMP2 expression. Therefore, PMS could be a potential therapeutic agent for vascular atherosclerosis and restenosis treatment.
Collapse
Affiliation(s)
- Leejin Lim
- Cancer Mutation Research Center, Chosun University, Gwangju, Korea
| | - Young-Jae Ki
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Korea
| | - Hyeonhwa Kim
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju, Korea
| | - Byeongsam Chu
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju, Korea
| | - In Young Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Korea
| | - Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Korea
| | - Heesang Song
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju, Korea.,Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, Korea
| |
Collapse
|
6
|
Icariside II attenuates vascular remodeling via Wnt7b/CCND1 axis. J Cardiovasc Pharmacol 2022; 80:48-55. [PMID: 35170494 DOI: 10.1097/fjc.0000000000001239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Angioplasty often fails due to the abnormal proliferation of vascular smooth muscle cells (VSMCs). Success rates of angioplasty may increase following the administration of an agent that effectively ameliorates aberrant vascular remodeling. Icariside II(ICS-II) is a natural flavonol glycoside extract from the Chinese herbal medicine Epimedii that possesses several medicinal qualities that are beneficial in humans. Nevertheless, the role of ICS-II in addressing aberrant vascular remodeling have yet to be clarified. The current investigation studies the molecular effects of ICS-II on balloon-inflicted neointimal hyperplasia in rats in vivo and on platelet-derived growth factor (PDGF)-induced vascular proliferation in primary rat aortic smooth muscle cells (VSMCs) in vitro. ICS-II was found to be as effective as rapamycin, the positive control used in this study. ICS-II inhibited neointimal formation in injured rat carotid arteries and notably reduced the expression of Wnt7b. ICS-II significantly counteracted PDGF-induced VSMCs proliferation. Cell cycle analysis showed that ICS-II triggered cell cycle arrest during the G1/S transition. Western blot analysis further indicated that this cell cycle arrest was likely through Wnt7b suppression that led to CCND1 inhibition. In conclusion, our findings demonstrate that ICS-II possesses significant anti-proliferative qualities that counteracts aberrant vascular neointimal hyperplasia. This phenomenon most likely occurs due to suppression of the Wnt7b/CCND1 axis.
Collapse
|
7
|
Li H, Guan K, Liu D, Liu M. Identification of mitochondria-related hub genes in sarcopenia and functional regulation of MFG-E8 on ROS-mediated mitochondrial dysfunction and cell cycle arrest. Food Funct 2021; 13:624-638. [PMID: 34928287 DOI: 10.1039/d1fo02610k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sarcopenia has high prevalence in the elderly population, but the genes and pathways related to aging in elderly patients with sarcopenia are poorly understood. Milk fat globule epidermal growth factor 8 (MFG-E8) is a peripheral membrane glycoprotein isolated from the milk fat globule membrane (MFGM). It has been found to exhibit various nutritional effects, including antibacterial, anti-cancer, anti-oxidant, anti-sarcopenia, and improving brain development and cognitive effects. This study aimed to investigate key differentially expressed genes (DEGs) and pathways associated with the progression of sarcopenia using bioinformatics analysis and in vitro myoblast experiment. The gene expression profiles of GSE8479 and GSE9676, which includes 40 young normal samples and 55 elderly samples, were downloaded from the Gene Expression Omnibus Database (GEO). Over 3253 DEGs were identified in the young and elderly samples (adjusted p value <0.05). A total of 213 co-expressed significantly DEGs were identified with Venn diagrams, including 82 up-regulated DEGs and 131 down-regulated DEGs. Based on the analysis of Gene Ontology (GO), protein-protein interaction (PPI) networks and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, 10 hub genes screened by our study have been proved to play a role in regulating the occurrence and development of aging-related sarcopenia mainly via metabolic pathways, Huntington's disease, Parkinson's disease, oxidative phosphorylation and non-alcoholic fatty liver disease pathways. To further verify the protective effect of MFG-E8 on oxidative stress injured myoblasts, the cell cycle distribution, cell viability and reactive oxygen species (ROS) production were measured. The protein and mRNA levels of Akt, extracellular regulated protein kinases (ERK), p21Cip1, p27Kip1, cyclin D1, cyclin E1, cyclin-dependent kinase (CDK) 2 and 4 were quantified using qRT-PCR and western blot analysis. The results indicated that MFG-E8 has potential anti-sarcopenia effects by promoting ERK and Akt activation-mediated cell proliferation and cell cycle progression in myoblasts.
Collapse
Affiliation(s)
- He Li
- College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China. .,Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endotheial Cells, Xuzhou 221116, Jiangsu, P.R. China
| | - Kaifang Guan
- College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China. .,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, P.R. China
| | - DanDan Liu
- College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China.
| | - Min Liu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, Guangxi, P.R. China
| |
Collapse
|