1
|
Cong X, Liu H, Zheng Y, Chen M. A Putative Role of Vasopressin/Oxytocin-Type Neuropeptide in Osmoregulation and Feeding Inhibition of Apostichopus japonicus. Int J Mol Sci 2023; 24:14358. [PMID: 37762661 PMCID: PMC10532012 DOI: 10.3390/ijms241814358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Vasopressin/oxytocin (VP/OT)-type neuropeptide is an ancient neurophysin-associated neuropeptide and has been intensively studied to be involved in multiple physiological processes in protostomian and deuterostome vertebrates. However, little is known about the functions of VP/OT-type neuropeptide in deuterostome invertebrates especially in echinoderms. Here, we firstly report VP/OT-type neuropeptide signaling in an important economic species, Apostichopus japonicus, which is widely cultured in Asia, with high nutritional and medicinal values. Molecular characterization analysis of holotocin and its precursor revealed the highly conserved features of VP/OT family. The candidate receptor for holotocin (AjHOR) was confirmed to be able to activate the signaling via cAMP-PKA and possible Ca2+-PKC pathway, and further activated the downstream ERK1/2 cascade. Holotocin precursor expression profile showed that they were mainly concentrated in circumoral nerve ring. Furthermore, in vitro pharmacological experiments demonstrated that holotocin caused contractile responses in preparations from A. japonicus. And in vivo functional studies indicated that short-term injection of holotocin resulted in body bloat and long-term injection resulted in reduced body mass, suggesting potential roles of holotocin in osmoregulation and feeding co-inhibition with holotocin-CCK. Our findings provided a comprehensive description of AjHOR-holotocin signaling, revealed ancient roles of holotocin in osmoregulation and feeding inhibition by controlling muscle contractions.
Collapse
Affiliation(s)
| | | | | | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (X.C.); (H.L.); (Y.Z.)
| |
Collapse
|
2
|
Guo X, Zhang L, Xiao K. Effect of Kisspeptin-Type Neuropeptide on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. Animals (Basel) 2023; 13:ani13040705. [PMID: 36830492 PMCID: PMC9951865 DOI: 10.3390/ani13040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 02/19/2023] Open
Abstract
Kisspeptins are neuropeptides encoded by the kiss1 gene, and little is known about them outside the vertebrate lineage. Two kisspeptin-type neuropeptides (KPs) have been discovered in Apostichopus japonicus (AjK1 and AjK2), an edible sea cucumber, and have been linked to reproductive and metabolic regulation. In this study, we evaluated how KPs affected locomotor behavior in one control group and two treatment groups (AjK1 and AjK2). We discovered that AjK1 had a significant dose effect, primarily by shortening the stride length and duration of movement to reduce the sea cucumber movement distance, whereas AjK2 had little inhibitory effect at the same dose. The levels of phosphatidylethanolamine (PE), phosphatidylcholine (PC), uridine, glycine, and L-serine in the longitudinal muscle of A. japonicus treated with AjK1 differed significantly from those of the control, which may explain the observed changes in locomotor behavior. Treatment with AjK2 induced changes in aspartate levels. Our results imply that AjK1 is more likely than AjK2 to have a role in the regulation of A. japonicus locomotion.
Collapse
Affiliation(s)
- Xueying Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Ding K, Zhang L, Fan X, Zhuo P, Feng Q, Zhang S, Guo X, Liu X. Influence of an L-type SALMFamide neuropeptide on locomotory performance and muscle physiology in the sea cucumber Apostichopus japonicus. J Exp Biol 2021; 224:272337. [PMID: 34477872 DOI: 10.1242/jeb.242566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
Neuropeptides in the SALMFamide family serve as muscle relaxants in echinoderms and may affect locomotion, as the motor behavior in sea cucumbers involves alternating contraction and extension of the body wall, which is under the control of longitudinal muscle. We evaluated the effect of an L-type SALMFamide neuropeptide (LSA) on locomotory performance of Apostichopus japonicus. We also investigated the metabolites of longitudinal muscle tissue using ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to assess the potential physiological mechanisms underlying the effect of LSA. The hourly distance, cumulative duration and number of steps moved significantly increased in sea cucumbers in the fourth hour after injection with LSA. Also, the treatment enhanced the mean and maximum velocity by 9.8% and 17.8%, respectively, and increased the average stride by 12.4%. Levels of 27 metabolites in longitudinal muscle changed after LSA administration, and the increased concentration of pantothenic acid, arachidonic acid and lysophosphatidylethanolamine, and the altered phosphatidylethanolamine/phosphatidylcholine ratio are potential physiological mechanisms that could explain the observed effect of LSA on locomotor behavior in A. japonicus.
Collapse
Affiliation(s)
- Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China.,Shandong Province Key Laboratory of Experimental Marine Biology, 266071 Qingdao, China
| | - Xinhao Fan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Pengji Zhuo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qiming Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shuangyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xueying Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Xiang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| |
Collapse
|