1
|
Yang H, Lu J, Wang K, Wu C, Yang B, Zhu J. Transcriptome Analysis Reveals the Venom Genes of the Ectoparasitoid Habrobracon hebetor (Hymenoptera: Braconidae). INSECTS 2024; 15:426. [PMID: 38921141 PMCID: PMC11203415 DOI: 10.3390/insects15060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
The ectoparasitoid Habrobracon hebetor (Hymenoptera: Braconidae) exhibits a broad parasitic capability towards various lepidopteran pests, with venom serving as a crucial virulent factor ensuring successful parasitization and subsequent host mortality. Analyzing the constituents of its venom is essential for elucidating the mechanisms underlying efficient host killing by this parasitoid and for exploring potentially functional venom proteins. Through a transcriptomic analysis, a total of 34 venom proteins were identified within the venom of H. hebetor, encompassing known components such as serine protease, metalloproteinase, esterase, and serine protease inhibitors commonly present in parasitoid venoms. Unique components like paralytic protein and ion transport peptide-like were identified, possibly specific to certain parasitoids, along with novel proteins with uncharacterized functions. Spatial gene expression profiling of the identified venom proteins using transcriptomic data, corroborated by quantitative PCR validation for 13 randomly selected proteins, revealed abundant expression levels in the venom apparatus, affirming them as genuine venom components. Notably, the paralytic protein exhibited prominent expression, with the highest FPKM (fragments per kilobase of transcript per million fragments mapped) value of 24,704.87 in the venom apparatus, indicative of its significant role in successful parasitism by H. hebetor. The identification of these venom proteins establishes a foundation for the further exploration of bioactive agents for pest management strategies.
Collapse
Affiliation(s)
- Hongyan Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
| | - Jingyi Lu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
| | - Kui Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
| | - Chaoyan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
2
|
Luo LL, Lin Y, Linghu JH, Gong W, Luo YH, Liu M, Jin DC, Smagghe G, Liu TX, Gui SH, Yi TC. Genomics, transcriptomics, and peptidomics of the greater wax moth Galleria mellonella neuropeptides and their expression in response to lead stress. INSECT SCIENCE 2024; 31:773-791. [PMID: 37689966 DOI: 10.1111/1744-7917.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 09/11/2023]
Abstract
Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40 neuropeptide precursors were confirmed in the G. mellonella peptidome. Interestingly, we identified 12 neuropeptide precursor genes present in G. mellonella but absent in honeybees, which may be potential novel pesticide target sites. Honeybee hives were contaminated with heavy metals such as lead, enabling its bioaccumulation in G. mellonella bodies through the food chain, we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G. mellonella neuropeptide precursors. After treatment by Pb, the expression of neuropeptide F1 was found to be significantly downregulated, implying that this neuropeptide might be associated with responding to the heavy metal stress in G. mellonella. This study comprehensively identified neuropeptide precursors in G. mellonella, and discussed the effects of heavy metals on insect neuropeptides, with the example of G. mellonella. The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G. mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.
Collapse
Affiliation(s)
- Li-Lin Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Yang Lin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Jun-Hong Linghu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Wei Gong
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Yuan-Hong Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Man Liu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Kaur G, Quilici DR, Woolsey RJ, Petereit J, Nuss AB. Starvation-Induced Changes to the Midgut Proteome and Neuropeptides in Manduca sexta. INSECTS 2024; 15:325. [PMID: 38786882 PMCID: PMC11121805 DOI: 10.3390/insects15050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Starvation is a complex physiological state that induces changes in protein expression to ensure survival. The insect midgut is sensitive to changes in dietary content as it is at the forefront of communicating information about incoming nutrients to the body via hormones. Therefore, a DIA proteomics approach was used to examine starvation physiology and, specifically, the role of midgut neuropeptide hormones in a representative lepidopteran, Manduca sexta. Proteomes were generated from midguts of M. sexta fourth-instar caterpillars, starved for 24 h and 48 h, and compared to fed controls. A total of 3047 proteins were identified, and 854 of these were significantly different in abundance. KEGG analysis revealed that metabolism pathways were less abundant in starved caterpillars, but oxidative phosphorylation proteins were more abundant. In addition, six neuropeptides or related signaling cascade proteins were detected. Particularly, neuropeptide F1 (NPF1) was significantly higher in abundance in starved larvae. A change in juvenile hormone-degrading enzymes was also detected during starvation. Overall, our results provide an exploration of the midgut response to starvation in M. sexta and validate DIA proteomics as a useful tool for quantifying insect midgut neuropeptide hormones.
Collapse
Affiliation(s)
- Gurlaz Kaur
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA;
| | - David R. Quilici
- Mick Hitchcock, Ph.D. Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA; (D.R.Q.); (R.J.W.)
| | - Rebekah J. Woolsey
- Mick Hitchcock, Ph.D. Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA; (D.R.Q.); (R.J.W.)
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA;
| | - Andrew B. Nuss
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
4
|
Bai X, Yu K, Xiong S, Chen J, Yang Y, Ye X, Yao H, Wang F, Fang Q, Song Q, Ye G. CRISPR/Cas9-mediated mutagenesis of the white gene in an ectoparasitic wasp, Habrobracon hebetor. PEST MANAGEMENT SCIENCE 2024; 80:1219-1227. [PMID: 37899674 DOI: 10.1002/ps.7851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND The ectoparasitic wasp Habrobracon hebetor (Hymenoptera, Braconidae) can parasitize various species of lepidopteran pests. To maximize its potential for biological control, it is necessary to investigate its gene function through genome engineering. RESULTS To test the effectiveness of genome engineering system in H. hebetor, we injected the mixture of clustered regularly interspaced short palindromic repeats (CRISPR) -associated (Cas) 9 protein and single guide RNA(s) targeting gene white into embryos. The resulting mutants display a phenotype of eye pigment loss. The phenotype was caused by small indel and is heritable. Then, we compared some biological parameters between wildtype and mutant, and found there were no significant differences in other parameters except for the offspring female rate and adult longevity. In addition, cocoons could be used to extract genomic DNA for genotype during the gene editing process without causing unnecessary harm to H. hebetor. CONCLUSION Our results demonstrate that the CRISPR/Cas9 system can be used for H. hebetor genome editing and it does not adversely affect biological parameters of the parasitoid wasps. We also provide a feasible non-invasive genotype detection method using genomic DNA extracted from cocoons. Our study introduces a novel tool and method for studying gene function in H. hebetor, and may contribute to better application of H. hebetor in biocontrol. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue Bai
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kaili Yu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qisheng Song
- Division of Plant Science and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Thakur S, Park Y, Jindal V. The functional assay identified authentic interactions between CAPA peptides and the CAPA receptor isoforms in Bemisia tabaci (Gennadius). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105840. [PMID: 38582602 DOI: 10.1016/j.pestbp.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/08/2024]
Abstract
CAPA neuropeptides regulate the diuresis/ antidiuresis process in insects by activating specific cognate receptor, CAPAr. In this study, we characterized the CAPAr gene (BtabCAPAr) in the whitefly, Bemisia tabaci Asia II 1. The two alternatively spliced isoforms of BtabCAPAr gene, BtabCAPAr-1 and BtabCAPAr-2, having six and five exons, respectively, were identified. The BtabCAPAr gene expression was highest in adult whitefly as compared to gene expression in egg, nymphal and pupal stages. Among the three putative CAPA peptides, CAPA-PVK1 and CAPA-PVK2 strongly activated the BtabCAPAr-1 with very low EC50 values of 0.067 nM and 0.053 nM, respectively, in heterologous calcium mobilization assays. None of the peptide activated the alternatively spliced isoform BtabCAPAr-2 that has lost the transmembrane segments 3 and 4. Significant levels of mortality were observed when whiteflies were fed with CAPA-PVK1 at 1.0 μM (50.0%), CAPA-PVK2 at 100.0 nM (43.8%) and CAPA-tryptoPK 1.0 μM (40.0%) at the 96 h after the treatment. This study provides valuable information to design biostable peptides to develop a class of insecticides.
Collapse
Affiliation(s)
- Sudeshna Thakur
- Insect Molecular Biology Laboratory, Punjab Agricultural University, Department of Entomology, Ludhiana, India
| | - Yoonseong Park
- Arthropod Molecular Physiology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Vikas Jindal
- Insect Molecular Biology Laboratory, Punjab Agricultural University, Department of Entomology, Ludhiana, India.
| |
Collapse
|
6
|
Huang C, Dong X, Yang X, Zou J, Yang M, Wang X, Li W, He Y. Identification of neuropeptides and their G protein-coupled receptors in the predatory stink bug, Arma custos (Hemiptera: Pentatomidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22094. [PMID: 38409857 DOI: 10.1002/arch.22094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
The predatory stink bug Arma custos has been selected as an effective biological control agent and has been successfully massly bred and released into fields for the control of a diverse insect pests. As a zoophytophagous generalist, A. custos relies on a complex neuropeptide signaling system to prey on distinct food and adapt to different environments. However, information about neuropeptide signaling genes in A. custos has not been reported to date. In the present study, a total of 57 neuropeptide precursor transcripts and 41 potential neuropeptide G protein-coupled receptor (GPCR) transcripts were found mainly using our sequenced transcriptome data. Furthermore, a number of neuropeptides and their GPCR receptors that were enriched in guts and salivary glands of A. custos were identified, which might play critical roles in feeding and digestion. Our study provides basic information for an in-depth understanding of biological and ecological characteristics of the predatory bug and would aid in the development of better pest management strategies based on the effective utilization and protection of beneficial natural enemies.
Collapse
Affiliation(s)
- Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiangli Dong
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Jingmiao Zou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Li W, Li Z, Yang X, Wang X, Yang M, Huang C, He Y. Transcriptome analysis reveals salivary gland-specific neuropeptide signaling genes in the predatory stink bug, Picromerus lewisi. Front Physiol 2023; 14:1270751. [PMID: 37841314 PMCID: PMC10570428 DOI: 10.3389/fphys.2023.1270751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Predatory stink bugs derive from phytophagous stink bugs and evolved enhanced predation skills. Neuropeptides are a diverse class of ancient signaling molecules that regulate physiological processes and behavior in animals, including stink bugs. Neuropeptide evolution might be important for the development of predation because neuropeptides can be converted to venoms that impact prey. However, information on neuropeptide signaling genes in predatory stink bugs is lacking. In the present study, neuropeptide signaling genes of Picromerus lewisi, an important predatory stink bug and an effective biological agent, were comprehensively identified by transcriptome analysis, with a total of 59 neuropeptide precursor genes and 58 potential neuropeptide receptor genes found. In addition, several neuropeptides and their receptors enriched in salivary glands of P. lewisi were identified. The present study and subsequent functional research contribute to an in-depth understanding of the biology and behavior of the predatory bugs and can provide basic information for the development of better pest management strategies, possibly including neuropeptide receptors as insecticide targets and salivary gland derived venom toxins as novel killing moleculars.
Collapse
Affiliation(s)
- Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhimo Li
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Kong X, Li ZX, Gao YQ, Liu FH, Chen ZZ, Tian HG, Liu TX, Xu YY, Kang ZW. Genome-Wide Identification of Neuropeptides and Their Receptors in an Aphid Endoparasitoid Wasp, Aphidius gifuensi. INSECTS 2021; 12:insects12080745. [PMID: 34442310 PMCID: PMC8397052 DOI: 10.3390/insects12080745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
In insects, neuropeptides and their receptors not only play a critical role in insect physiology and behavior but also are the potential targets for novel pesticide discoveries. Aphidius gifuensis is one of the most important and widespread aphid parasitoids, and has been successfully used to control aphid. In the present work, we systematically identified neuropeptides and their receptors from the genome and head transcriptome of A. gifuensis. A total of 35 neuropeptide precursors and 49 corresponding receptors were identified. The phylogenetic analyses demonstrated that 35 of these receptors belong to family-A, four belong to family-B, two belong to leucine-rich repeat-containing GPCRs, four belong to receptor guanylyl cyclases, and four belong to receptor tyrosine kinases. Oral ingestion of imidacloprid significantly up-regulated five neuropeptide precursors and four receptors whereas three neuropeptide precursors and eight receptors were significantly down-regulated, which indicated that these neuropeptides and their receptors are potential targets of some commercial insecticides. The RT-qPCR results showed that dopamine receptor 1, dopamine receptor 2, octopamine receptor, allatostatin-A receptor, neuropeptides capa receptor, SIFamide receptor, FMRFamide receptor, tyramine receptor and short neuropeptide F predominantly were expressed in the head whilst the expression of ion transport peptide showed widespread distribution in various tissues. The high expression levels of these genes suggest their important roles in the central nervous system. Taken together, our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in the regulation of the physiology and behavior of solitary wasps. Furthermore, this information could also aid in the design and discovery of specific and environment-friendly insecticides.
Collapse
Affiliation(s)
- Xue Kong
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Zhen-Xiang Li
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Fang-Hua Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China;
| | - Tong-Xian Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
- Correspondence: (Y.-Y.X.); (Z.-W.K.)
| | - Zhi-Wei Kang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China;
- Correspondence: (Y.-Y.X.); (Z.-W.K.)
| |
Collapse
|
9
|
Nihei KI, Peigneur S, Tytgat J, Lange AB, Konno K. Isolation and characterization of FMRFamide-like peptides in the venoms of solitary sphecid wasps. Peptides 2021; 142:170575. [PMID: 34023397 DOI: 10.1016/j.peptides.2021.170575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Purification of small peptide components in the venoms of the solitary sphecid wasps, Sphex argentatus argentatus and Isodontia harmandi, led to the isolation of several major peptides. Analysis of MS/MS spectra by MALDI-TOF/TOF revealed the sequence of a new peptide Sa112 (EDVDHVFLRF-NH2), which is structurally very similar to leucomyosupressin (pQDVDHVFLRF-NH2) and SchistoFLRFamide (PDVDHVFLRF-NH2), the FMRFamide-like peptides from cockroach and locust, respectively. Indeed, this new peptide, like SchistoFLRFamide, inhibited the frequency and amplitude of spontaneous contractions of the locust oviduct in a dose-dependent manner. A non-amidated peptide Sa12b (EDVDHVFLRF) was also isolated, but this peptide had no effect on spontaneous locust oviduct contraction. This is the first example of a FMRF-like peptide to be found in solitary wasp venom. Additionally, a truncated form of the myosuppressins, which has previously been synthesized and tested for biological activity, DVDHVFLRF-NH2 (Sh5b), was found for the first time as a natural product. Four other novel peptides were isolated and characterized as Sa81 (EDDLEDFNPTVS), Sa10 (EDDLEDFNPTIA), Sh41 (DDLSDFNPKV), and Sh42 (EDDLSDFNPKV). They are structurally related to each other, having a high content of acidic amino acids, but no structural similarity to any known peptides. Ion channel associated activities of Sh41 and Sh42 were tested, but did not show any activity for Na+, K+, Ca2+ channels.
Collapse
Affiliation(s)
- Ken-Ichi Nihei
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, Tochigi 321-0943, Japan
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Angela B Lange
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
10
|
Nässel DR, Wu SF. Leucokinins: Multifunctional Neuropeptides and Hormones in Insects and Other Invertebrates. Int J Mol Sci 2021; 22:1531. [PMID: 33546414 PMCID: PMC7913504 DOI: 10.3390/ijms22041531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Leucokinins (LKs) constitute a neuropeptide family first discovered in a cockroach and later identified in numerous insects and several other invertebrates. The LK receptors are only distantly related to other known receptors. Among insects, there are many examples of species where genes encoding LKs and their receptors are absent. Furthermore, genomics has revealed that LK signaling is lacking in several of the invertebrate phyla and in vertebrates. In insects, the number and complexity of LK-expressing neurons vary, from the simple pattern in the Drosophila larva where the entire CNS has 20 neurons of 3 main types, to cockroaches with about 250 neurons of many different types. Common to all studied insects is the presence or 1-3 pairs of LK-expressing neurosecretory cells in each abdominal neuromere of the ventral nerve cord, that, at least in some insects, regulate secretion in Malpighian tubules. This review summarizes the diverse functional roles of LK signaling in insects, as well as other arthropods and mollusks. These functions include regulation of ion and water homeostasis, feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. Other functions are implied by the neuronal distribution of LK, but remain to be investigated.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|