1
|
Bader Eddin L, Nagoor Meeran MF, Kumar Jha N, Goyal SN, Ojha S. Isoproterenol mechanisms in inducing myocardial fibrosis and its application as an experimental model for the evaluation of therapeutic potential of phytochemicals and pharmaceuticals. Animal Model Exp Med 2024. [PMID: 39690876 DOI: 10.1002/ame2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/14/2024] [Indexed: 12/19/2024] Open
Abstract
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fibrosis, which appears to be a leading cause of cardiovascular diseases. Cardiac fibrosis is characterized by the accumulation of extracellular matrix proteins, mainly collagen in the cardiac interstitium. Many experimental studies have demonstrated that fibrotic injury in the heart is reversible; therefore, it is vital to understand different molecular mechanisms that are involved in the initiation, progression, and resolution of cardiac fibrosis to enable the development of antifibrotic agents. Of the many experimental models, one of the recent models that has gained renewed interest is isoproterenol (ISP)-induced cardiac fibrosis. ISP is a synthetic catecholamine, sympathomimetic, and nonselective β-adrenergic receptor agonist. The overstimulated and sustained activation of β-adrenergic receptors has been reported to induce biochemical and physiological alterations and ultimately result in cardiac remodeling. ISP has been used for decades to induce acute myocardial infarction. However, the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis; this practice has increased in recent years. Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy. The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is considered the initiating mechanism of myocardial fibrosis. ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals. In recent years, numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis. The present review exclusively provides a comprehensive summary of the pathological biochemical, histological, and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy. It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as synthetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Samer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Wang X, Wang X, Ma J, Zhang S, Fang W, Xu F, Du J, Liang H, Duan W, Li Z, Liu J. GPR30 Agonist G1 Mitigates Sepsis-Induced Cardiac Dysfunction by Inhibiting ACE2/c-FOS-Mediated Necroptosis in Female Mice. ACS Infect Dis 2024; 10:3797-3809. [PMID: 39377746 DOI: 10.1021/acsinfecdis.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sepsis is a severe inflammatory syndrome with high mortality and morbidity. Sepsis-induced myocardial dysfunction (SIMD) is a common cause of death in sepsis. The female sex is less susceptible to sepsis-related organ dysfunction, although the underlying mechanism of this sex difference remains unclear. This study explored the role of estrogen receptor G protein-coupled estrogen receptor 30 (GPR30) in septic cardiac dysfunction. Results from the present study indicated that GPR30 activation by the G1 agonist protected female mouse hearts against SIMD exposed to lipopolysaccharides. However, this beneficial effect was absent in female ACE2-knockout mice, as demonstrated by poorer cardiac contractility, myocardial injury, and necroptosis. We also demonstrated that the Stat6 transcription factor induced ace2 transcription by enhancing its promoter activity under GPR30 activation in septic hearts. The adenovirus-mediated inhibition of ACE2 targeting c-FOS expression reversed the deterioration, restored cardiac function, and improved survival in female ACE2-knockout mice. These results demonstrate the essential role of GPR30/STAT6/ACE2/c-FOS-mediated necroptosis in G1-mediated protection and provide novel insight into the pathogenesis of sepsis-related organ damage.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Shuaishuai Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Weiyi Fang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Fujie Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Jun Du
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Hongliang Liang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, United States
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| |
Collapse
|
3
|
Ding S, Wang X, Wang Y, Zhang Z, Yang X, Zhu X, Zhu B, Xiao C, Ge J, Yang X. The downstream network of STAT6 in promoting vascular smooth muscle cell phenotypic switch and neointimal formation. Cell Biol Int 2023; 47:1573-1588. [PMID: 37303238 DOI: 10.1002/cbin.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/30/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
Intimal thickening caused by the excessive multiplication of vascular smooth muscle cells (VSMCs) is the pathological process central to cardiovascular diseases, including restenosis. In response to vascular injury, VSMCs would undergo phenotypic switching from a fully differentiated, low proliferative rate phenotype to a more pro-proliferative, promigratory, and incompletely-differentiated state. The lack of a full understanding of the molecular pathways coupling the vascular injury stimuli to VSMCs phenotype switching largely limits the development of medical therapies for treating intima hyperplasia-related diseases. The role of signal transducers and activators of transcription 6 (STAT6) in modulating the proliferation and differentiation of various cell types, especially macrophage, has been well investigated, but little is known about its pathophysiological role and target genes in restenosis after vascular injury. In the present work, Stat6-/- mice were observed to exhibit less severe intimal hyperplasia compared with Stat6+/+ mice after carotid injury. The expression of STAT6 was upregulated in VSMCs located in the injured vascular walls. STAT6 deletion leads to decreased proliferation and migration of VSMCs while STAT6 overexpression enhances the proliferation and migration of VSMCs companies with reduced expression of VSMCs marker genes and organized stress fibers. The effect of STAT6 in mouse VSMCs was conserved in human aortic SMCs. RNA-deep-sequencing and experiments verification revealed LncRNA C7orf69/LOC100996318-miR-370-3p/FOXO1-ER stress signaling as the downstream network mediating the pro-dedifferentiation effect of STAT6 in VSMCs. These findings broaden our understanding of vascular pathological molecules and throw a beam of light on the therapy of a variety of proliferative vascular diseases.
Collapse
Affiliation(s)
- Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangfei Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Shanghai, China
| | - Zhiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiyang Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaowei Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baoling Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Xiao
- Department of Cardiology, The Third People's Hospital of Huizhou, Guangdong, Huizhou, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cardiology, The Third People's Hospital of Huizhou, Guangdong, Huizhou, China
- NHC Key Laboratory of Viral Heart Diseases, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
4
|
Bendaya I, Ben Jemaa A, Sahraoui G, Kharrat M, Sdiri W, Oueslati R. Immunometabolism mRNA expression phenotypes and reprogramming of CD14 in T2DM with or without CVD. Int Immunopharmacol 2023; 122:110665. [PMID: 37487262 DOI: 10.1016/j.intimp.2023.110665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND/AIM Type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD) have a significant impact on the expression of genes in peripheral blood mononuclear cells (PBMCs). The primary objective of this study was to investigate the role of two signaling pathways, STAT1/6, and two important modulators of immunometabolism, leptin and PPARs, in the development of T2DM with and without CVD. Furthermore, the study aimed to assess the correlation between these factors and the dynamics of CD14 in PBMCs. This research was conducted within the context of a growing body of literature on the complex pathophysiology of T2DM and its association with CVD. Prior studies have indicated that T2DM is characterized by an imbalance in immunometabolism and the involvement of various signaling pathways. MATERIALS AND METHODS Blood samples were collected from a total of 47 subjects, including 7 healthy volunteers, 20 individuals diagnosed with diabetes and cardiovascular disease (D.CVD) and another 20 individuals diagnosed with diabetes only (D). PBMCs were isolated from these samples, and the expression levels of leptin, PPARγ, PPARα, and CD14 genes were measured using Real-Time PCR. RESULTS The most relevant result showed that diabetic patients with CVD had significantly higher levels of leptin expression, which was positively correlated with STAT1 (r = 0.7497, p = 0.0001). On the other hand, diabetic patients without CVD had elevated PPARγ expression, which was strongly correlated with STAT6 (r = 0.8437, p = 0.0001). Interestingly, we found a significant increase in the PPARγ/ PPARα ratio in the D.CVD group compared to the D group (4.273 ± 0.9531; 7.52 ± 3.556, p = 0.0479). Moreover, CD14 expression was significantly reduced in this group compared to diabetic patients without CVD. CONCLUSION These findings suggested that the immunometabolic imbalance in T2DM was driven by a STAT1/Leptin phenotype in diabetic patients with CVD and by a STAT6/PPARγ phenotype in diabetic patients without CVD. Taking into account STAT1/Leptin and STAT6/PPARγ profiling could help clinicians identify novel therapeutic targets for T2DM and other related diseases.
Collapse
Affiliation(s)
- Imen Bendaya
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia.
| | - Awatef Ben Jemaa
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia; Department of Biology, Faculty of science of Gafsa ,University of Gafsa, Gafsa, Tunisia
| | - Ghada Sahraoui
- Department of Pathology, Salah Azaeiz Institute, Bab Saadoun 1006 Tunis, Tunis, Tunisia
| | - Maher Kharrat
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wissem Sdiri
- Department of Cardiology, University Hospital Habib Bougatfa of Bizerte, Bizerte, Tunisia
| | - Ridha Oueslati
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
5
|
Peng Z, Chen H, Wang M. Identification of the biological processes, immune cell landscape, and hub genes shared by acute anaphylaxis and ST-segment elevation myocardial infarction. Front Pharmacol 2023; 14:1211332. [PMID: 37469874 PMCID: PMC10353022 DOI: 10.3389/fphar.2023.1211332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Background: Patients with anaphylaxis are at risk for ST-segment elevation myocardial infarction (STEMI). However, the pathological links between anaphylaxis and STEMI remain unclear. Here, we aimed to explore shared biological processes, immune effector cells, and hub genes of anaphylaxis and STEMI. Methods: Gene expression data for anaphylactic (GSE69063) and STEMI (GSE60993) patients with corresponding healthy controls were pooled from the Gene Expression Omnibus database. Differential expression analysis, enrichment analysis, and CIBERSORT were used to reveal transcriptomic signatures and immune infiltration profiles of anaphylaxis and STEMI, respectively. Based on common differentially expressed genes (DEGs), Gene Ontology analysis, cytoHubba algorithms, and correlation analyses were performed to identify biological processes, hub genes, and hub gene-related immune cells shared by anaphylaxis and STEMI. The robustness of hub genes was assessed in external anaphylactic (GSE47655) and STEMI (GSE61144) datasets. Furthermore, a murine model of anaphylaxis complicated STEMI was established to verify hub gene expressions. The logistic regression analysis was used to evaluate the diagnostic efficiency of hub genes. Results: 265 anaphylaxis-related DEGs were identified, which were associated with immune-inflammatory responses. 237 STEMI-related DEGs were screened, which were involved in innate immune response and myeloid leukocyte activation. M0 macrophages and dendritic cells were markedly higher in both anaphylactic and STEMI samples compared with healthy controls, while CD4+ naïve T cells and CD8+ T cells were significantly lower. Enrichment analysis of 33 common DEGs illustrated shared biological processes of anaphylaxis and STEMI, including cytokine-mediated signaling pathway, response to reactive oxygen species, and positive regulation of defense response. Six hub genes were identified, and their expression levels were positively correlated with M0 macrophage abundance and negatively correlated with CD4+ naïve T cell abundance. In external anaphylactic and STEMI samples, five hub genes (IL1R2, FOS, MMP9, DUSP1, CLEC4D) were confirmed to be markedly upregulated. Moreover, experimentally induced anaphylactic mice developed impaired heart function featuring STEMI and significantly increased expression of the five hub genes. DUSP1 and CLEC4D were screened as blood diagnostic biomarkers of anaphylaxis and STEMI based on the logistic regression analysis. Conclusion: Anaphylaxis and STEMI share the biological processes of inflammation and defense responses. Macrophages, dendritic cells, CD8+ T cells, and CD4+ naïve T cells constitute an immune cell population that acts in both anaphylaxis and STEMI. Hub genes (DUSP1 and CLEC4D) identified here provide candidate genes for diagnosis, prognosis, and therapeutic targeting of STEMI in anaphylactic patients.
Collapse
Affiliation(s)
- Zekun Peng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Shi Y, Li J, Chen H, Hu Y, Tang L, Zhou X, Tao M, Lv Z, Chen S, Qiu A, Liu N. Pharmacologic Inhibition of Histone Deacetylase 6 Prevents the Progression of Chlorhexidine Gluconate-Induced Peritoneal Fibrosis by Blockade of M2 Macrophage Polarization. Front Immunol 2022; 13:899140. [PMID: 35784347 PMCID: PMC9240186 DOI: 10.3389/fimmu.2022.899140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal fibrosis contributes to ultrafiltration failure in peritoneal dialysis (PD) patients and thus restricts the wide application of PD in clinic. Recently we have demonstrated that histone deacetylase 6 (HDAC6) is critically implicated in high glucose peritoneal dialysis fluid (HG-PDF) induced peritoneal fibrosis, however, the precise mechanisms of HDAC6 in peritoneal fibrosis have not been elucidated. Here, we focused on the role and mechanisms of HDAC6 in chlorhexidine gluconate (CG) induced peritoneal fibrosis and discussed the mechanisms involved. We found Tubastatin A (TA), a selective inhibitor of HDAC6, significantly prevented the progression of peritoneal fibrosis, as characterized by reduction of epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) protein deposition. Inhibition of HDAC6 remarkably suppressed the expression of matrix metalloproteinases-2 (MMP2) and MMP-9. Administration of TA also increased the expression of acetylation Histone H3 and acetylation α-tubulin. Moreover, our results revealed that blockade of HDAC6 inhibited alternatively M2 macrophages polarization by suppressing the activation of TGF-β/Smad3, PI3K/AKT, and STAT3, STAT6 pathways. To give a better understanding of the mechanisms, we further established two cell injured models in Raw264.7 cells by using IL-4 and HG-PDF. Our in vitro experiments illustrated that both IL-4 and HG-PDF could induce M2 macrophage polarization, as demonstrated by upregulation of CD163 and Arginase-1. Inhibition of HDAC6 by TA significantly abrogated M2 macrophage polarization dose-dependently by suppressing TGF-β/Smad, IL4/STAT6, and PI3K/AKT signaling pathways. Collectively, our study revealed that blockade of HDAC6 by TA could suppress the progression of CG-induced peritoneal fibrosis by blockade of M2 macrophage polarization. Thus, HDAC6 may be a promising target in peritoneal fibrosis treatment.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zexin Lv
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Na Liu,
| |
Collapse
|