1
|
Long S, Tang X, Si X, Kong T, Zhu Y, Wang C, Qi C, Mu Z, Liu J. TriFusion enables accurate prediction of miRNA-disease association by a tri-channel fusion neural network. Commun Biol 2024; 7:1067. [PMID: 39215090 PMCID: PMC11364641 DOI: 10.1038/s42003-024-06734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The identification of miRNA-disease associations is crucial for early disease prevention and treatment. However, it is still a computational challenge to accurately predict such associations due to improper information encoding. Previous methods characterize miRNA-disease associations only from single levels, causing the loss of multi-level association information. In this study, we propose TriFusion, a powerful and interpretable deep learning framework for miRNA-disease association prediction. It develops a tri-channel architecture to encode the association features of miRNAs and diseases from different levels and designs a feature fusion encoder to smoothly fuse these features. After training and testing, TriFusion outperforms other leading methods and offers strong interpretability through its learned representations. Furthermore, TriFusion is applied to three high-risk sexually associated cancers (ovarian, breast, and prostate cancers) and exhibits remarkable ability in the identification of miRNAs associated with the three diseases.
Collapse
Affiliation(s)
- Sheng Long
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Xiaoran Tang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Xinyi Si
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Tongxin Kong
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Yanhao Zhu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Chuanzhi Wang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Chenqing Qi
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Zengchao Mu
- School of Mathematics and Statistics, Shandong University, Weihai, China.
| | - Juntao Liu
- School of Mathematics and Statistics, Shandong University, Weihai, China.
| |
Collapse
|
2
|
Gill TS, Zaidi SSH, Shirazi MA. Attention-based deep convolutional neural network for classification of generalized and focal epileptic seizures. Epilepsy Behav 2024; 155:109732. [PMID: 38636140 DOI: 10.1016/j.yebeh.2024.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Epilepsy affects over 50 million people globally. Electroencephalography is critical for epilepsy diagnosis, but manual seizure classification is time-consuming and requires extensive expertise. This paper presents an automated multi-class seizure classification model using EEG signals from the Temple University Hospital Seizure Corpus ver. 1.5.2. 11 features including time-based correlation, time-based eigenvalues, power spectral density, frequency-based correlation, frequency-based eigenvalues, sample entropy, spectral entropy, logarithmic sum, standard deviation, absolute mean, and ratio of Daubechies D4 wavelet transformed coefficients were extracted from 10-second sliding windows across channels. The model combines multi-head self-attention mechanism with a deep convolutional neural network (CNN) to classify seven subtypes of generalized and focal epileptic seizures. The model achieved 0.921 weighted accuracy and 0.902 weighted F1 score in classifying focal onset non-motor, generalized onset non-motor, simple partial, complex partial, absence, tonic, and tonic-clonic seizures. In comparison, a CNN model without multi-head attention achieved 0.767 weighted accuracy. Ablation studies were conducted to validate the importance of transformer encoders and attention. The promising classification results demonstrate the potential of deep learning for handling EEG complexity and improving epilepsy diagnosis. This seizure classification model could enable timely interventions when translated into clinical practice.
Collapse
Affiliation(s)
- Taimur Shahzad Gill
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Syed Sajjad Haider Zaidi
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Muhammad Ayaz Shirazi
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| |
Collapse
|
3
|
Kohansal M, Alghanimi YK, Banoon SR, Ghasemian A, Afkhami H, Daraei A, Wang Z, Nekouian N, Xie J, Deng X, Tang H. CircRNA-associated ceRNA regulatory networks as emerging mechanisms governing the development and biophysiopathology of epilepsy. CNS Neurosci Ther 2024; 30:e14735. [PMID: 38676299 PMCID: PMC11053249 DOI: 10.1111/cns.14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The etiology of epilepsy is ascribed to the synchronized aberrant neuronal activity within the brain. Circular RNAs (circRNAs), a class of non-coding RNAs characterized by their circular structures and covalent linkage, exert a substantial influence on this phenomenon. CircRNAs possess stereotyped replication, transience, repetitiveness, and paroxysm. Additionally, MicroRNA (miRNA) plays a crucial role in the regulation of diverse pathological processes, including epilepsy. CircRNA is of particular significance due to its ability to function as a competing endogenous RNA, thereby sequestering or inhibiting miRNA activity through binding to target mRNA. Our review primarily concentrates on elucidating the pathological and functional roles, as well as the underlying mechanisms, of circRNA-miRNA-mRNA networks in epilepsy. Additionally, it explores the potential utility of these networks for early detection and therapeutic intervention.
Collapse
Affiliation(s)
- Maryam Kohansal
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
- Department of BiologyPayame Noor UniversityTehranIran
| | | | - Shaimaa R. Banoon
- Department of Biology, College of ScienceUniversity of MisanAmarahIraq
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Hamed Afkhami
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
- Cellular and Molecular Research CenterQom University of Medical SciencesQomIran
- Faculty of MedicineShahed UniversityTehranIran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Zhangling Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Najmeh Nekouian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
4
|
Liu D, Dong X, Bian D, Zhou W. Epileptic Seizure Prediction Using Attention Augmented Convolutional Network. Int J Neural Syst 2023; 33:2350054. [PMID: 37675593 DOI: 10.1142/s0129065723500545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Early seizure prediction is crucial for epilepsy patients to reduce accidental injuries and improve their quality of life. Identifying pre-ictal EEG from the inter-ictal state is particularly challenging due to their nonictal nature and remarkable similarities. In this study, a novel epileptic seizure prediction method is proposed based on multi-head attention (MHA) augmented convolutional neural network (CNN) to address the issue of CNN's limit of capturing global information of input signals. First, data enhancement is performed on original EEG recordings to balance the pre-ictal and inter-ictal EEG data, and the EEG recordings are sliced into 6-second-long EEG segments. Subsequently, EEG time-frequency distribution is obtained using Stockwell transform (ST), and the attention augmented convolutional network is employed for feature extraction and classification. Finally, post-processing is utilized to reduce the false prediction rate (FPR). The CHB-MIT EEG database was used to evaluate the system. The validation results showed a segment-based sensitivity of 98.24% and an event-based sensitivity of 94.78% with a FPR of 0.05/h were yielded, respectively. The satisfying results of the proposed method demonstrate its possible potential for clinical applications.
Collapse
Affiliation(s)
- Dongsheng Liu
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Xingchen Dong
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Dong Bian
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
5
|
Dong B, Sun W, Xu D, Wang G, Zhang T. DAEMDA: A Method with Dual-Channel Attention Encoding for miRNA-Disease Association Prediction. Biomolecules 2023; 13:1514. [PMID: 37892196 PMCID: PMC10604960 DOI: 10.3390/biom13101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
A growing number of studies have shown that aberrant microRNA (miRNA) expression is closely associated with the evolution and development of various complex human diseases. These key biomarkers' identification and observation are significant for gaining a deeper understanding of disease pathogenesis and therapeutic mechanisms. Consequently, pinpointing potential miRNA-disease associations (MDA) has become a prominent bioinformatics subject, encouraging several new computational methods given the advances in graph neural networks (GNN). Nevertheless, these existing methods commonly fail to exploit the network nodes' global feature information, leaving the generation of high-quality embedding representations using graph properties as a critical unsolved issue. Addressing these challenges, we introduce the DAEMDA, a computational method designed to optimize the current models' efficacy. First, we construct similarity and heterogeneous networks involving miRNAs and diseases, relying on experimentally corroborated miRNA-disease association data and analogous information. Then, a newly-fashioned parallel dual-channel feature encoder, designed to better comprehend the global information within the heterogeneous network and generate varying embedding representations, follows this. Ultimately, employing a neural network classifier, we merge the dual-channel embedding representations and undertake association predictions between miRNA and disease nodes. The experimental results of five-fold cross-validation and case studies of major diseases based on the HMDD v3.2 database show that this method can generate high-quality embedded representations and effectively improve the accuracy of MDA prediction.
Collapse
Affiliation(s)
| | | | | | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China; (B.D.)
| | - Tianjiao Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China; (B.D.)
| |
Collapse
|
6
|
Pan R, Yang C, Li Z, Ren J, Duan Y. Magnetoencephalography-based approaches to epilepsy classification. Front Neurosci 2023; 17:1183391. [PMID: 37502686 PMCID: PMC10368885 DOI: 10.3389/fnins.2023.1183391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
Epilepsy is a chronic central nervous system disorder characterized by recurrent seizures. Not only does epilepsy severely affect the daily life of the patient, but the risk of premature death in patients with epilepsy is three times higher than that of the normal population. Magnetoencephalography (MEG) is a non-invasive, high temporal and spatial resolution electrophysiological data that provides a valid basis for epilepsy diagnosis, and used in clinical practice to locate epileptic foci in patients with epilepsy. It has been shown that MEG helps to identify MRI-negative epilepsy, contributes to clinical decision-making in recurrent seizures after previous epilepsy surgery, that interictal MEG can provide additional localization information than scalp EEG, and complete excision of the stimulation area defined by the MEG has prognostic significance for postoperative seizure control. However, due to the complexity of the MEG signal, it is often difficult to identify subtle but critical changes in MEG through visual inspection, opening up an important area of research for biomedical engineers to investigate and implement intelligent algorithms for epilepsy recognition. At the same time, the use of manual markers requires significant time and labor costs, necessitating the development and use of computer-aided diagnosis (CAD) systems that use classifiers to automatically identify abnormal activity. In this review, we discuss in detail the results of applying various different feature extraction methods on MEG signals with different classifiers for epilepsy detection, subtype determination, and laterality classification. Finally, we also briefly look at the prospects of using MEG for epilepsy-assisted localization (spike detection, high-frequency oscillation detection) due to the unique advantages of MEG for functional area localization in epilepsy, and discuss the limitation of current research status and suggestions for future research. Overall, it is hoped that our review will facilitate the reader to quickly gain a general understanding of the problem of MEG-based epilepsy classification and provide ideas and directions for subsequent research.
Collapse
Affiliation(s)
- Ruoyao Pan
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Chunlan Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhimei Li
- Department of Internal Neurology, Tiantan Hospital, Beijing, China
| | - Jiechuan Ren
- Department of Internal Neurology, Tiantan Hospital, Beijing, China
| | - Ying Duan
- Beijing Universal Medical Imaging Diagnostic Center, Beijing, China
| |
Collapse
|
7
|
Sollee J, Tang L, Igiraneza AB, Xiao B, Bai HX, Yang L. Artificial Intelligence for Medical Image Analysis in Epilepsy. Epilepsy Res 2022; 182:106861. [DOI: 10.1016/j.eplepsyres.2022.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/18/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
|