1
|
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, Ördög N, Zsiros C, Kiricsi Á, Pankotai-Bodó G, Kovács Á, Paróczai D, Botkáné AL, Kajtár B, Sükösd F, Lehoczki A, Polgár T, Letoha A, Pankotai T, Tiszlavicz L. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2024:10.1007/s11357-024-01398-4. [PMID: 39495479 DOI: 10.1007/s11357-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to severe acute respiratory syndrome, and while most individuals recover within weeks, approximately 30-40% experience persistent symptoms collectively known as Long COVID, post-COVID-19 syndrome, or post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC). These enduring symptoms, including fatigue, respiratory difficulties, body pain, short-term memory loss, concentration issues, and sleep disturbances, can persist for months. According to recent studies, SARS-CoV-2 infection causes prolonged disruptions in mitochondrial function, significantly altering cellular energy metabolism. Our research employed transmission electron microscopy to reveal distinct mitochondrial structural abnormalities in Long COVID patients, notably including significant swelling, disrupted cristae, and an overall irregular morphology, which collectively indicates severe mitochondrial distress. We noted increased levels of superoxide dismutase 1 which signals oxidative stress and elevated autophagy-related 4B cysteine peptidase levels, indicating disruptions in mitophagy. Importantly, our analysis also identified reduced levels of circulating cell-free mitochondrial DNA (ccf-mtDNA) in these patients, serving as a novel biomarker for the condition. These findings underscore the crucial role of persistent mitochondrial dysfunction in the pathogenesis of Long COVID. Further exploration of the cellular and molecular mechanisms underlying post-viral mitochondrial dysfunction is critical, particularly to understand the roles of autoimmune reactions and the reactivation of latent viruses in perpetuating these conditions. This comprehensive understanding could pave the way for targeted therapeutic interventions designed to alleviate the chronic impacts of Long COVID. By utilizing circulating ccf-mtDNA and other novel mitochondrial biomarkers, we can enhance our diagnostic capabilities and improve the management of this complex syndrome.
Collapse
Affiliation(s)
- Titanilla Szögi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Barbara N Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Dejana Masic
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Bánfi
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csenge Zsiros
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kovács
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Dóra Paróczai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lugosi Botkáné
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Tamás Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Annamária Letoha
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary.
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Molnar T, Lehoczki A, Fekete M, Varnai R, Zavori L, Erdo-Bonyar S, Simon D, Berki T, Csecsei P, Ezer E. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. GeroScience 2024; 46:5267-5286. [PMID: 38668888 PMCID: PMC11336094 DOI: 10.1007/s11357-024-01165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 08/22/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has introduced the medical community to the phenomenon of long COVID, a condition characterized by persistent symptoms following the resolution of the acute phase of infection. Among the myriad of symptoms reported by long COVID sufferers, chronic fatigue, cognitive disturbances, and exercise intolerance are predominant, suggesting systemic alterations beyond the initial viral pathology. Emerging evidence has pointed to mitochondrial dysfunction as a potential underpinning mechanism contributing to the persistence and diversity of long COVID symptoms. This review aims to synthesize current findings related to mitochondrial dysfunction in long COVID, exploring its implications for cellular energy deficits, oxidative stress, immune dysregulation, metabolic disturbances, and endothelial dysfunction. Through a comprehensive analysis of the literature, we highlight the significance of mitochondrial health in the pathophysiology of long COVID, drawing parallels with similar clinical syndromes linked to post-infectious states in other diseases where mitochondrial impairment has been implicated. We discuss potential therapeutic strategies targeting mitochondrial function, including pharmacological interventions, lifestyle modifications, exercise, and dietary approaches, and emphasize the need for further research and collaborative efforts to advance our understanding and management of long COVID. This review underscores the critical role of mitochondrial dysfunction in long COVID and calls for a multidisciplinary approach to address the gaps in our knowledge and treatment options for those affected by this condition.
Collapse
Affiliation(s)
- Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Reka Varnai
- Department of Primary Health Care, Medical School University of Pecs, Pecs, Hungary
| | | | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, Ret U 2, 7624, Pecs, Hungary.
| | - Erzsebet Ezer
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
3
|
Skulachev VP, Vyssokikh MY, Chernyak BV, Mulkidjanian AY, Skulachev MV, Shilovsky GA, Lyamzaev KG, Borisov VB, Severin FF, Sadovnichii VA. Six Functions of Respiration: Isn't It Time to Take Control over ROS Production in Mitochondria, and Aging Along with It? Int J Mol Sci 2023; 24:12540. [PMID: 37628720 PMCID: PMC10454651 DOI: 10.3390/ijms241612540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria. The ROS bursts typically occur when the mitochondrial membrane potential (MMP) becomes too high, e.g., due to mitochondrial malfunction, leading to cardiolipin (CL) oxidation. Depending on the intensity of CL damage, specific programs for the elimination of damaged mitochondria (mitophagy), whole cells (apoptosis), or organisms (phenoptosis) can be activated. In particular, we consider those mechanisms that suppress ROS generation by enabling ATP synthesis at low MMP levels. We discuss evidence that the mild depolarization mechanism of direct ATP/ADP exchange across mammalian inner and outer mitochondrial membranes weakens with age. We review recent data showing that by protecting CL from oxidation, mitochondria-targeted antioxidants decrease lethality in response to many potentially deadly shock insults. Thus, targeting ROS- and CL-dependent pathways may prevent acute mortality and, hopefully, slow aging.
Collapse
Affiliation(s)
- Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Mikhail Yu. Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | | | - Maxim V. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Institute of Mitoengineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gregory A. Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Fedor F. Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Victor A. Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
4
|
Nazarov PA, Khrulnova SA, Kessenikh AG, Novoyatlova US, Kuznetsova SB, Bazhenov SV, Sorochkina AI, Karakozova MV, Manukhov IV. Observation of Cytotoxicity of Phosphonium Derivatives Is Explained: Metabolism Inhibition and Adhesion Alteration. Antibiotics (Basel) 2023; 12:antibiotics12040720. [PMID: 37107081 PMCID: PMC10135132 DOI: 10.3390/antibiotics12040720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
The search for new antibiotics, substances that kill prokaryotic cells and do not kill eukaryotic cells, is an urgent need for modern medicine. Among the most promising are derivatives of triphenylphosphonium, which can protect the infected organs of mammals and heal damaged cells as mitochondria-targeted antioxidants. In addition to the antioxidant action, triphenylphosphonium derivatives exhibit antibacterial activity. It has recently been reported that triphenylphosphonium derivatives cause either cytotoxic effects or inhibition of cellular metabolism at submicromolar concentrations. In this work, we analyzed the MTT data using microscopy and compared them with data on changes in the luminescence of bacteria. We have shown that, at submicromolar concentrations, only metabolism is inhibited, while an increase in alkyltriphenylphosphonium (CnTPP) concentration leads to adhesion alteration. Thus, our data on eukaryotic and prokaryotic cells confirm a decrease in the metabolic activity of cells by CnTPPs but do not confirm a cytocidal effect of TPPs at submicromolar concentrations. This allows us to consider CnTPP as a non-toxic antibacterial drug at low concentrations and a relatively safe vector for delivering other antibacterial substances into bacterial cells.
Collapse
Affiliation(s)
- Pavel A Nazarov
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Svetlana A Khrulnova
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- National Research Center for Hematology, 117198 Moscow, Russia
| | - Andrew G Kessenikh
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, 125080 Moscow, Russia
| | - Uliana S Novoyatlova
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, 125080 Moscow, Russia
| | | | - Sergey V Bazhenov
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, 125080 Moscow, Russia
| | - Alexandra I Sorochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina V Karakozova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Ilya V Manukhov
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, 125080 Moscow, Russia
| |
Collapse
|
5
|
Amri N, Tessier N, Bégin R, Vachon L, Bégin P, Bazin R, Loubaki L, Martel C. Blood Endothelial-Cell Extracellular Vesicles as Potential Biomarkers for the Selection of Plasma in COVID-19 Convalescent Plasma Therapy. Cells 2022; 11:cells11193122. [PMID: 36231083 PMCID: PMC9563445 DOI: 10.3390/cells11193122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the advancement of vaccination and therapies currently available, deaths due to the coronavirus disease 2019 (COVID-19) are still heavily documented. Severely infected individuals experience a generalized inflammatory storm, caused by massive secretion of pro-inflammatory cytokines that can lead to endothelial dysfunction, cardiovascular disease, multi-organ failure, and even death. COVID-19 convalescent plasma (CCP) therapy, selected primarily based on anti-SARS-CoV-2 antibody levels, has not been as convincing as expected in the fight against COVID-19. Given the consequences of a dysfunctional endothelium on the progression of the disease, we propose that the selection of plasma for CCP therapy should be based on more specific parameters that take into consideration the effect on vascular inflammation. Thus, in the present study, we have characterized a subset of CCP that have been used for CCP therapy and measured their anti- or pro-inflammatory effect on human coronary artery endothelial cells (HCAECs). Our data revealed that the longer the time lapse between the onset of symptoms and the plasma donation, the more mitochondrial dysfunction can be evidenced. The concentration of blood endothelial cell extracellular vesicles (BEC-EVs) was increased in the plasma of young individuals with mild symptoms. This type of selected convalescent plasma promoted the activation of the blood vascular endothelium, as reflected by the overexpression of ICAM1 and NFκB1 and the downregulation of VE-Cadherin. We propose this mechanism is a warning signal sent by the injured endothelium to trigger self-defense of peripheral blood vessels against excessive inflammation. Therefore, these results are in line with our previous data. They suggest that a more specific selection of COVID-19 convalescent plasma should be based on the time of donation following the onset of the clinical symptoms of the donor, the severity of the symptoms, and the age of the donor. These characteristics are relatively easy to identify in any hospital and would reflect the concentration of plasma BEC-EVs and be optimal in CCP therapy.
Collapse
Affiliation(s)
- Nada Amri
- Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, 5000, Belanger Street, Montreal, QC H1T 1C8, Canada
| | - Nolwenn Tessier
- Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, 5000, Belanger Street, Montreal, QC H1T 1C8, Canada
| | - Rémi Bégin
- Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, 5000, Belanger Street, Montreal, QC H1T 1C8, Canada
| | - Laurent Vachon
- Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, 5000, Belanger Street, Montreal, QC H1T 1C8, Canada
| | - Philippe Bégin
- Department of Pediatrics, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
- Department of Medicine, Centre Hospitalier de l’Université de Montréal, 900, Rue Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Renée Bazin
- Medical Affairs and Innovation, Héma-Québec, 1070, Avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Lionel Loubaki
- Medical Affairs and Innovation, Héma-Québec, 1070, Avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Catherine Martel
- Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, 5000, Belanger Street, Montreal, QC H1T 1C8, Canada
- Correspondence: ; Tel.: +1-(514)-376-3330 (ext. 2977)
| |
Collapse
|
6
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Nanotechnology to the Rescue: Treatment Perspective for the Immune Dysregulation Observed in COVID-19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The study of the use of nanotechnology for drug delivery has been extensive. Nanomedical approaches for therapeutics; drug delivery in particular is superior to conventional methods in that it allows for controlled targeted delivery and release, higher stability, extended circulation time, minimal side-effects, and improved pharmacokinetic clearance (of the drug) form the body, to name a few. The magnitude of COVID-19, the current ongoing pandemic has been severe; it has caused widespread the loss of human life. In individuals with severe COVID-19, immune dysregulation and a rampant state of hyperinflammation is observed. This kind of an immunopathological response is detrimental and results in rapid disease progression, development of secondary infections, sepsis and can be fatal. Several studies have pin-pointed the reason for this immune dysregulation; deviations in the signaling pathways involved in the mediation and control of immune responses. In severe COVID-19 patients, many signaling cascades including JAK/STAT, NF-κB, MAPK/ERK, TGF beta, VEGF, and Notch signaling were found to be either upregulated or inactivated. Targeting these aberrant signaling pathways in conjunction with antiviral therapy will effectuate mitigation of the hyperinflammation, hypercytokinemia, and promote faster recovery. The science of the use of nanocarriers as delivery agents to modulate these signaling pathways is not new; it has already been explored for other inflammatory diseases and in particular, cancer therapy. Numerous studies have evaluated the efficacy and potential of nanomedical approaches to modulate these signaling pathways and have been met with positive results. A treatment regime, that includes nanotherapeutics and antiviral therapies will prove effective and holds great promise for the successful treatment of COVID-19. In this article, we review different nanomedical approaches already studied for targeting aberrant signaling pathways, the host immune response to SARS-CoV-2, immunopathology and the dysregulated signaling pathways observed in severe COVID-19 and the current treatment methods in use for targeting signaling cascades in COVID-19. We then conclude by suggesting that the use of nanomedical drug delivery systems for targeting signaling pathways can be extended to effectively target the aberrant signaling pathways in COVID-19 for best treatment results.
Collapse
|