1
|
Mahmoodi K, Kerick SE, Franaszczuk PJ, Parsons TD, Grigolini P, West BJ. Complexity synchronization in emergent intelligence. Sci Rep 2024; 14:6758. [PMID: 38514808 PMCID: PMC10958045 DOI: 10.1038/s41598-024-57384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
In this work, we use a simple multi-agent-based-model (MABM) of a social network, implementing selfish algorithm (SA) agents, to create an adaptive environment and show, using a modified diffusion entropy analysis (DEA), that the mutual-adaptive interaction between the parts of such a network manifests complexity synchronization (CS). CS has been shown to exist by processing simultaneously measured time series from among organ-networks (ONs) of the brain (neurophysiology), lungs (respiration), and heart (cardiovascular reactivity) and to be explained theoretically as a synchronization of the multifractal dimension (MFD) scaling parameters characterizing each time series. Herein, we find the same kind of CS in the emergent intelligence of groups formed in a self-organized social interaction without macroscopic control but with biased self-interest between two groups of agents playing an anti-coordination game. This computational result strongly suggests the existence of the same CS in real-world social phenomena and in human-machine interactions as that found empirically in ONs.
Collapse
Affiliation(s)
- Korosh Mahmoodi
- US Combat Capabilities Command, Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, USA.
| | - Scott E Kerick
- US Combat Capabilities Command, Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, USA
| | - Piotr J Franaszczuk
- US Combat Capabilities Command, Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Thomas D Parsons
- Computational Neuropsychology Simulation Laboratory, Edson College, Arizona State University, Tempe, AZ, 85004, USA
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, Denton, TX, 76203, USA
| | - Bruce J West
- Center for Nonlinear Science, University of North Texas, Denton, TX, 76203, USA
- Office of Research and Innovation, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
2
|
Vazquez-Guerrero P, Tuladhar R, Psychalinos C, Elwakil A, Chacron MJ, Santamaria F. Fractional order memcapacitive neuromorphic elements reproduce and predict neuronal function. Sci Rep 2024; 14:5817. [PMID: 38461365 PMCID: PMC10925066 DOI: 10.1038/s41598-024-55784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
There is an increasing need to implement neuromorphic systems that are both energetically and computationally efficient. There is also great interest in using electric elements with memory, memelements, that can implement complex neuronal functions intrinsically. A feature not widely incorporated in neuromorphic systems is history-dependent action potential time adaptation which is widely seen in real cells. Previous theoretical work shows that power-law history dependent spike time adaptation, seen in several brain areas and species, can be modeled with fractional order differential equations. Here, we show that fractional order spiking neurons can be implemented using super-capacitors. The super-capacitors have fractional order derivative and memcapacitive properties. We implemented two circuits, a leaky integrate and fire and a Hodgkin-Huxley. Both circuits show power-law spiking time adaptation and optimal coding properties. The spiking dynamics reproduced previously published computer simulations. However, the fractional order Hodgkin-Huxley circuit showed novel dynamics consistent with criticality. We compared the responses of this circuit to recordings from neurons in the weakly-electric fish that have previously been shown to perform fractional order differentiation of their sensory input. The criticality seen in the circuit was confirmed in spontaneous recordings in the live fish. Furthermore, the circuit also predicted long-lasting stimulation that was also corroborated experimentally. Our work shows that fractional order memcapacitors provide intrinsic memory dependence that could allow implementation of computationally efficient neuromorphic devices. Memcapacitors are static elements that consume less energy than the most widely studied memristors, thus allowing the realization of energetically efficient neuromorphic devices.
Collapse
Affiliation(s)
- Patricia Vazquez-Guerrero
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78349, USA
| | - Rohisha Tuladhar
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78349, USA
| | | | - Ahmed Elwakil
- Department of Electrical and Computer Engineering, University of Sharjah, PO Box 27272, Sharjah, UAE
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Quebec, H3G 1Y6, Canada
| | - Fidel Santamaria
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78349, USA.
| |
Collapse
|
3
|
Benfatto M, Pace E, Davoli I, Francini R, De Matteis F, Scordo A, Clozza A, De Paolis L, Curceanu C, Grigolini P. Biophotons: New Experimental Data and Analysis. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1431. [PMID: 37895552 PMCID: PMC10606557 DOI: 10.3390/e25101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Biophotons are an ultra-weak emission of photons in the visible energy range from living matter. In this work, we study the emission from germinating seeds using an experimental technique designed to detect light of extremely small intensity. The emission from lentil seeds and single bean was analyzed during the whole germination process in terms of the different spectral components through low pass filters and the different count distributions in the various stages of the germination process. Although the shape of the emission spectrum appears to be very similar in the two samples used in our experiment, our analysis can highlight the differences present in the two cases. In this way, it was possible to correlate the various types of emissions to the degree of development of the seed during germination.
Collapse
Affiliation(s)
- Maurizio Benfatto
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Elisabetta Pace
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Ivan Davoli
- Dipartimento di Fisica, Università di “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Roberto Francini
- Dipartimento di Ingegneria Industriale, Università di “Tor Vergata”, Via del Politecnico, 00133 Rome, Italy; (R.F.); (F.D.M.)
| | - Fabio De Matteis
- Dipartimento di Ingegneria Industriale, Università di “Tor Vergata”, Via del Politecnico, 00133 Rome, Italy; (R.F.); (F.D.M.)
| | - Alessandro Scordo
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Alberto Clozza
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Luca De Paolis
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Catalina Curceanu
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203, USA;
| |
Collapse
|
4
|
Ahammer H, Reiss MA, Hackhofer M, Andronache I, Radulovic M, Labra-Spröhnle F, Jelinek HF. ComsystanJ: A collection of Fiji/ImageJ2 plugins for nonlinear and complexity analysis in 1D, 2D and 3D. PLoS One 2023; 18:e0292217. [PMID: 37796873 PMCID: PMC10553304 DOI: 10.1371/journal.pone.0292217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Complex systems such as the global climate, biological organisms, civilisation, technical or social networks exhibit diverse behaviours at various temporal and spatial scales, often characterized by nonlinearity, feedback loops, and emergence. These systems can be characterized by physical quantities such as entropy, information, chaoticity or fractality rather than classical quantities such as time, velocity, energy or temperature. The drawback of these complexity quantities is that their definitions are not always mathematically exact and computational algorithms provide estimates rather than exact values. Typically, evaluations can be cumbersome, necessitating specialized tools. We are therefore introducing ComsystanJ, a novel and user-friendly software suite, providing a comprehensive set of plugins for complex systems analysis, without the need for prior programming knowledge. It is platform independent, end-user friendly and extensible. ComsystanJ combines already known algorithms and newer methods for generalizable analysis of 1D signals, 2D images and 3D volume data including the generation of data sets such as signals and images for testing purposes. It is based on the framework of the open-source image processing software Fiji and ImageJ2. ComsystanJ plugins are macro recordable and are maintained as open-source software. ComsystanJ includes effective surrogate analysis in all dimensions to validate the features calculated by the different algorithms. Future enhancements of the project will include the implementation of parallel computing for image stacks and volumes and the integration of artificial intelligence methods to improve feature recognition and parameter calculation.
Collapse
Affiliation(s)
- Helmut Ahammer
- GSRC, Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria
| | - Martin A. Reiss
- Community Coordinated Modeling Center, Greenbelt, Maryland, United States of America
| | - Moritz Hackhofer
- GSRC, Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria
| | - Ion Andronache
- Research Center for Integrated Analysis and Territorial Management, Faculty of Geography, University of Bucharest, Bucharest, Romania
| | - Marko Radulovic
- Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Fabián Labra-Spröhnle
- School of Biological Sciences - Te Kura Mātauranga Koiora, Victoria University of Wellington - Te Herenga Waka & Paediatrics Research Unit, Te Whatu Ora | Health New Zealand – Nelson Marlborough, Nelson, New Zealand
| | - Herbert Franz Jelinek
- Department of Biomedical Engineering and Health Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Nasrat SA, Mahmoodi K, Khandoker AH, Grigolini P, Jelinek HF. Multiscale Diffusion Entropy Analysis for the Detection of Crucial Events in Cardiac Pathology. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083786 DOI: 10.1109/embc40787.2023.10340403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The significance of crucial events in explaining the dynamics of a physiological system has only been recently emerging. Crucial events are yet to be fully understood and implemented in clinical applications of physiological signal processing. This paper proposes the application of modified diffusion entropy (MDEA) and novel multiscale diffusion entropy analyses (MSDEA) on measuring the temporal complexity of the ECG time series to improve crucial events detection performance. Thirty samples of each of three groups of ECG datasets from PhysioNet with recordings of cardiac arrhythmia (ARR), congestive heart failure (CHF) and normal sinus rhythm (NSR) were analyzed using MDEA with stripes followed by MSDEA. Healthy NSR ECGs showed an approximate 15% greater inverse power law (IPL) and scaling δ indices than pathologic CHF and ARR signals. Additionally, the scaling indices for the pathologic groups showed higher standard deviations, indicating that crucial events determined by MDEA reveal latent differences in ECG complexity that could better be investigated across multiple time scales of temporally decomposed signals using MSDEA which combines multiscale entropy (MSE) and MDEA. Hence, MSDEA showed an improved, clearer discrimination between the healthy and pathological cardiac signals (p<0.0005) characterized by a range of NSR complexity indices twice the range of the pathological values associated with ARR and CHF across twenty temporal scales as well as more reliable trend lines (R2>=0.95).Clinical Relevance- This research proposes a novel and enhanced diagnostic discrimination across healthy and pathologic cardiac conditions based on biomedical signal processing of ECG recordings utilizing the principle of crucial events detection.
Collapse
|
6
|
Mayor D, Steffert T, Datseris G, Firth A, Panday D, Kandel H, Banks D. Complexity and Entropy in Physiological Signals (CEPS): Resonance Breathing Rate Assessed Using Measures of Fractal Dimension, Heart Rate Asymmetry and Permutation Entropy. ENTROPY (BASEL, SWITZERLAND) 2023; 25:301. [PMID: 36832667 PMCID: PMC9955651 DOI: 10.3390/e25020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND As technology becomes more sophisticated, more accessible methods of interpretating Big Data become essential. We have continued to develop Complexity and Entropy in Physiological Signals (CEPS) as an open access MATLAB® GUI (graphical user interface) providing multiple methods for the modification and analysis of physiological data. METHODS To demonstrate the functionality of the software, data were collected from 44 healthy adults for a study investigating the effects on vagal tone of breathing paced at five different rates, as well as self-paced and un-paced. Five-minute 15-s recordings were used. Results were also compared with those from shorter segments of the data. Electrocardiogram (ECG), electrodermal activity (EDA) and Respiration (RSP) data were recorded. Particular attention was paid to COVID risk mitigation, and to parameter tuning for the CEPS measures. For comparison, data were processed using Kubios HRV, RR-APET and DynamicalSystems.jl software. We also compared findings for ECG RR interval (RRi) data resampled at 4 Hz (4R) or 10 Hz (10R), and non-resampled (noR). In total, we used around 190-220 measures from CEPS at various scales, depending on the analysis undertaken, with our investigation focused on three families of measures: 22 fractal dimension (FD) measures, 40 heart rate asymmetries or measures derived from Poincaré plots (HRA), and 8 measures based on permutation entropy (PE). RESULTS FDs for the RRi data differentiated strongly between breathing rates, whether data were resampled or not, increasing between 5 and 7 breaths per minute (BrPM). Largest effect sizes for RRi (4R and noR) differentiation between breathing rates were found for the PE-based measures. Measures that both differentiated well between breathing rates and were consistent across different RRi data lengths (1-5 min) included five PE-based (noR) and three FDs (4R). Of the top 12 measures with short-data values consistently within ± 5% of their values for the 5-min data, five were FDs, one was PE-based, and none were HRAs. Effect sizes were usually greater for CEPS measures than for those implemented in DynamicalSystems.jl. CONCLUSION The updated CEPS software enables visualisation and analysis of multichannel physiological data using a variety of established and recently introduced complexity entropy measures. Although equal resampling is theoretically important for FD estimation, it appears that FD measures may also be usefully applied to non-resampled data.
Collapse
Affiliation(s)
- David Mayor
- School of Health and Social Work, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Tony Steffert
- MindSpire, Napier House, 14–16 Mount Ephraim Rd., Tunbridge Wells TN1 1EE, UK
- School of Life, Health and Chemical Sciences, STEM, Walton Hall, The Open University, Milton Keynes MK7 6AA, UK
| | - George Datseris
- Department of Mathematics and Statistics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | - Andrea Firth
- University Campus Football Business, Wembley HA9 0WS, UK
| | - Deepak Panday
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Harikala Kandel
- Department of Computer Science and Information Systems, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Duncan Banks
- School of Life, Health and Chemical Sciences, STEM, Walton Hall, The Open University, Milton Keynes MK7 6AA, UK
- Department of Physiology, Busitema University, Mbale P.O. Box 1966, Uganda
| |
Collapse
|
7
|
Hunt von Herbing I, Tonello L, Benfatto M, Pease A, Grigolini P. Crucial Development: Criticality Is Important to Cell-to-Cell Communication and Information Transfer in Living Systems. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1141. [PMID: 34573766 PMCID: PMC8472183 DOI: 10.3390/e23091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
In the fourth paper of this Special Issue, we bridge the theoretical debate on the role of memory and criticality discussed in the three earlier manuscripts, with a review of key concepts in biology and focus on cell-to-cell communication in organismal development. While all living organisms are dynamic complex networks of organization and disorder, most studies in biology have used energy and biochemical exchange to explain cell differentiation without considering the importance of information (entropy) transfer. While all complex networks are mixtures of patterns of complexity (non-crucial and crucial events), it is the crucial events that determine the efficiency of information transfer, especially during key transitions, such as in embryogenesis. With increasing multicellularity, emergent relationships from cell-to-cell communication create reaction-diffusion exchanges of different concentrations of biochemicals or morphogenetic gradients resulting in differential gene expression. We suggest that in conjunction with morphogenetic gradients, there exist gradients of information transfer creating cybernetic loops of stability and disorder, setting the stage for adaptive capability. We specifically reference results from the second paper in this Special Issue, which correlated biophotons with lentil seed germination to show that phase transitions accompany changes in complexity patterns during development. Criticality, therefore, appears to be an important factor in the transmission, transfer and coding of information for complex adaptive system development.
Collapse
Affiliation(s)
- Ione Hunt von Herbing
- Biological Sciences Department, University of North Texas, Denton, TX 76203-5017, USA;
| | - Lucio Tonello
- GY Academy Higher Education Institution, E305, The Hub Workspace, Triq San Andrija, SGN1612 San Gwann, Malta;
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203-5017, USA;
| | - Maurizio Benfatto
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy;
| | - April Pease
- Biological Sciences Department, University of North Texas, Denton, TX 76203-5017, USA;
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203-5017, USA;
| |
Collapse
|
8
|
Biophotons and Emergence of Quantum Coherence-A Diffusion Entropy Analysis. ENTROPY 2021; 23:e23050554. [PMID: 33947077 PMCID: PMC8146849 DOI: 10.3390/e23050554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022]
Abstract
We study the emission of photons from germinating seeds using an experimental technique designed to detect light of extremely small intensity. We analyze the dark count signal without germinating seeds as well as the photon emission during the germination process. The technique of analysis adopted here, called diffusion entropy analysis (DEA) and originally designed to measure the temporal complexity of astrophysical, sociological and physiological processes, rests on Kolmogorov complexity. The updated version of DEA used in this paper is designed to determine if the signal complexity is generated either by non-ergodic crucial events with a non-stationary correlation function or by the infinite memory of a stationary but non-integrable correlation function or by a mixture of both processes. We find that dark count yields the ordinary scaling, thereby showing that no complexity of either kinds may occur without any seeds in the chamber. In the presence of seeds in the chamber anomalous scaling emerges, reminiscent of that found in neuro-physiological processes. However, this is a mixture of both processes and with the progress of germination the non-ergodic component tends to vanish and complexity becomes dominated by the stationary infinite memory. We illustrate some conjectures ranging from stress induced annihilation of crucial events to the emergence of quantum coherence.
Collapse
|
9
|
Culbreth G, Bologna M, West BJ, Grigolini P. Caputo Fractional Derivative and Quantum-Like Coherence. ENTROPY (BASEL, SWITZERLAND) 2021; 23:211. [PMID: 33572106 PMCID: PMC7914961 DOI: 10.3390/e23020211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022]
Abstract
We study two forms of anomalous diffusion, one equivalent to replacing the ordinary time derivative of the standard diffusion equation with the Caputo fractional derivative, and the other equivalent to replacing the time independent diffusion coefficient of the standard diffusion equation with a monotonic time dependence. We discuss the joint use of these prescriptions, with a phenomenological method and a theoretical projection method, leading to two apparently different diffusion equations. We prove that the two diffusion equations are equivalent and design a time series that corresponds to the anomalous diffusion equation proposed. We discuss these results in the framework of the growing interest in fractional derivatives and the emergence of cognition in nature. We conclude that the Caputo fractional derivative is a signature of the connection between cognition and self-organization, a form of cognition emergence different from the other source of anomalous diffusion, which is closely related to quantum coherence. We propose a criterion to detect the action of self-organization even in the presence of significant quantum coherence. We argue that statistical analysis of data using diffusion entropy should help the analysis of physiological processes hosting both forms of deviation from ordinary scaling.
Collapse
Affiliation(s)
- Garland Culbreth
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX 76201, USA;
| | - Mauro Bologna
- Departamento de Ingeniería Eléctrica-Electrónica, Universidad de Tarapacá, 1000000 Arica, Chile;
| | - Bruce J. West
- Army Research Office, DEVCOM US Army Research Laboratory, Research Triangle Park, NC 27708, USA;
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX 76201, USA;
| |
Collapse
|