1
|
Buchko GW, Kegulian NC, Moradian-Oldak J. Ameloblastin binding to biomimetic models of cell membranes - A continuum of intrinsic disorder. Arch Oral Biol 2025; 169:106124. [PMID: 39514919 DOI: 10.1016/j.archoralbio.2024.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE A 37-residue amino acid sequence corresponding to the segment encoded by exon-5 of murine ameloblastin (Ambn), AB2 (Y67-Q103), has been implicated with membrane association, ameloblastin self-assembly, and amelogenin-binding. Our aim was to characterize, at the residue level, the structural behavior of AB2 bound to chemical mimics of biological membranes using NMR spectroscopy. DESIGN To better define the structure of AB2 using NMR-based methods, recombinant 13C- and 15N-labelled AB2 (*AB2) was prepared and data collected free in solution and with deuterated dodecylphosphocholine (dPC) micelles, deuterated bicelles, and both small and large unilamellar vesicles. RESULTS Amide chemical shift and intensity perturbations observed in 1H-15N HSQC spectra of *AB2 in the presence of bicelles and dPC micelles suggest that a region of *AB2, S6-E36 (murine Ambn S68 - E98), associates with the membrane biomimetics. A CSI-3 analysis of the NMR chemical shift assignments for *AB2 free in solution and bound to dPC micelles indicated the peptide remains disordered except for the adoption of a short, 12-residue α-helix, F10-G21 (murine Ambn F72-G83). In dPC micelles, the NOE NMR data was void of patterns characteristic of long-lived helical structure indicating this helix was transient in nature. CONCLUSIONS A continuum of intrinsic disorder in the membrane-bound state may be responsible for ameloblastin's ability to dynamically interact with multiple partners at the same site during amelogenesis.
Collapse
Affiliation(s)
- Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA; School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | - Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Kegulian NC, Moradian-Oldak J. Deletion within ameloblastin multitargeting domain reduces its interaction with artificial cell membrane. J Struct Biol 2024; 216:108143. [PMID: 39447937 PMCID: PMC11784912 DOI: 10.1016/j.jsb.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In human, mutations in the gene encoding the enamel matrix protein ameloblastin (Ambn) have been identified in cases of amelogenesis imperfecta. In mouse models, perturbations in the Ambn gene have caused loss of enamel and dramatic disruptions in enamel-making ameloblast cell function. Critical roles for Ambn in ameloblast cell signaling and polarization as well as adhesion to the nascent enamel matrix have been supported. Recently, we have identified a multitargeting domain (MTD) in Ambn that interacts with cell membrane, with the majority enamel matrix protein amelogenin, and with itself. This domain includes an amphipathic helix (AH) motif that directly interacts with cell membrane. In this study, we analyzed the sequence of the MTD for evolutionary conservation and found high conservation among mammals within the MTD and particularly within the AH motif. We computationally predicted that the AH motif lost its hydrophobic moment upon deleting hydrophobic but not hydrophilic residues from the motif. Furthermore, we rationally designed peptides that encompassed the Ambn MTD and contained deletions of largely hydrophobic or hydrophilic stretches of residues. To assess their AH-forming and membrane-binding abilities, we combined those peptides with synthetic phospholipid membrane vesicles and performed circular dichroism, membrane leakage, and vesicle clearance measurements. Circular dichroism showed retention of α-helix formation in all peptides except the one with the largest deletion of eleven amino acids including seven that were hydrophobic. This same peptide variant failed to cause leakage or clearance of synthetic membranes, while smaller deletions yielded intermediate membrane interaction as measured by leakage and clearance assays. Our data revealed that deletion of key hydrophobic residues from the AH leads to the most dramatic loss of Ambn-membrane interaction. Pinpointing roles of residues within the MTD has important implications for the multifunctionality of Ambn.
Collapse
Affiliation(s)
- Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
3
|
Kegulian NC, Visakan G, Bapat RA, Moradian-Oldak J. Ameloblastin and its multifunctionality in amelogenesis: A review. Matrix Biol 2024; 131:62-76. [PMID: 38815936 PMCID: PMC11218920 DOI: 10.1016/j.matbio.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Extracellular matrix proteins play crucial roles in the formation of mineralized tissues like bone and teeth via multifunctional mechanisms. In tooth enamel, ameloblastin (Ambn) is one such multifunctional extracellular matrix protein implicated in cell signaling and polarity, cell adhesion to the developing enamel matrix, and stabilization of prismatic enamel morphology. To provide a perspective for Ambn structure and function, we begin this review by describing dental enamel and enamel formation (amelogenesis) followed by a description of enamel extracellular matrix. We then summarize the established domains and motifs in Ambn protein, human amelogenesis imperfecta cases, and genetically engineered mouse models involving mutated or null Ambn. We subsequently delineate in silico, in vitro, and in vivo evidence for the amphipathic helix in Ambn as a proposed cell-matrix adhesive and then more recent in vitro evidence for the multitargeting domain as the basis for dynamic interactions of Ambn with itself, amelogenin, and membranes. The multitargeting domain facilitates tuning between Ambn-membrane interactions and self/co-assembly and supports a likely overall role for Ambn as a matricellular protein. We anticipate that this review will enhance the understanding of multifunctional matrix proteins by consolidating diverse mechanisms through which Ambn contributes to enamel extracellular matrix mineralization.
Collapse
Affiliation(s)
- Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Gayathri Visakan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
5
|
Shao C, Bapat RA, Su J, Moradian-Oldak J. Regulation of Hydroxyapatite Nucleation In Vitro through Ameloblastin-Amelogenin Interactions. ACS Biomater Sci Eng 2023; 9:1834-1842. [PMID: 35068157 PMCID: PMC9308824 DOI: 10.1021/acsbiomaterials.1c01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amelogenin (Amel) and ameloblastin (Ambn) are two primary extracellular enamel matrix proteins that play crucial roles for proper thickness, prismatic structure, and robust mechanical properties. Previous studies have shown that Amel and Ambn bind to each other, but the effect of their coassembly on the nucleation of hydroxyapatite (HAP) is unclear. Here, we systematically investigated the coassembly of recombinant mouse Amel and Ambn in various ratios using in situ atomic force microscopy, dynamic light scattering, and transmission electron microscopy. The size of protein particles decreased as the Ambn:Amel ratio increased. To define the coassembly domain on Ambn, we used Ambn-derived peptides and Ambn variants to examine their effects on the amelogenin particle size distribution. We found that the peptide sequence encoded by exon 5 of Ambn affected Amel self-assembly but the variant lacking this sequence did not have any effect on Amel self-assembly. Furthermore, through monitoring the pH change in bulk mineralization solution, we tracked the nucleation behavior of HAP in the presence of Ambn and Amel and found that their coassemblies at different ratios showed varying abilities to stabilize amorphous calcium phosphate. These results demonstrated that Ambn and Amel coassemble with each other via a motif within the sequence encoded by exon 5 of Ambn and cooperate in regulating the nucleation of HAP crystals, enhancing our understanding of the important role of enamel matrix proteins in amelogenesis.
Collapse
Affiliation(s)
- Changyu Shao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Jingtan Su
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| |
Collapse
|
6
|
Kegulian NC, Langen R, Moradian-Oldak J. The Dynamic Interactions of a Multitargeting Domain in Ameloblastin Protein with Amelogenin and Membrane. Int J Mol Sci 2023; 24:3484. [PMID: 36834897 PMCID: PMC9966149 DOI: 10.3390/ijms24043484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The enamel matrix protein Ameloblastin (Ambn) has critical physiological functions, including regulation of mineral formation, cell differentiation, and cell-matrix adhesion. We investigated localized structural changes in Ambn during its interactions with its targets. We performed biophysical assays and used liposomes as a cell membrane model. The xAB2N and AB2 peptides were rationally designed to encompass regions of Ambn that contained self-assembly and helix-containing membrane-binding motifs. Electron paramagnetic resonance (EPR) on spin-labeled peptides showed localized structural gains in the presence of liposomes, amelogenin (Amel), and Ambn. Vesicle clearance and leakage assays indicated that peptide-membrane interactions were independent from peptide self-association. Tryptophan fluorescence and EPR showed competition between Ambn-Amel and Ambn-membrane interactions. We demonstrate localized structural changes in Ambn upon interaction with different targets via a multitargeting domain, spanning residues 57 to 90 of mouse Ambn. Structural changes of Ambn following its interaction with different targets have relevant implications for the multifunctionality of Ambn in enamel formation.
Collapse
Affiliation(s)
- Natalie C. Kegulian
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Ralf Langen
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Visakan G, Bapat RA, Su J, Moradian-Oldak J. Modeling ameloblast-matrix interactions using 3D cell culture. Front Physiol 2022; 13:1069519. [PMID: 36531170 PMCID: PMC9751369 DOI: 10.3389/fphys.2022.1069519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
The distinct morphology adopted by ameloblasts during amelogenesis is highly stage specific and involved intimately with the development of a hierarchical enamel microstructure. The molecular mechanisms that govern the development of an elongated and polarized secretory ameloblast morphology and the potential roles played by the enamel matrix proteins in this process are not fully understood. Thus far, the in vitro models that have been developed to mimic these early cell-matrix interactions have either been unable to demonstrate direct morphological change or have failed to adapt across ameloblast cell lines. Here, we use a recently established 3D cell culture model to examine the interactions between HAT-7 cells and the major enamel matrix proteins, amelogenin and ameloblastin. We demonstrate that HAT-7 cells selectively respond to functional EMPs in culture by forming clusters of tall cells. Aspect ratio measurements from three-dimensional reconstructions reveal that cell elongation is 5-times greater in the presence of EMPs when compared with controls. Using confocal laser scanning microscopy, we observe that these clusters are polarized with asymmetrical distributions of Par-3 and claudin-1 proteins. The behavior of HAT-7 cells in 3D culture with EMPs is comparable with that of ALC and LS-8 cells. The fact that the 3D model presented here is tunable with respect to gel substrate composition and ameloblast cell type highlights the overall usefulness of this model in studying ameloblast cell morphology in vitro.
Collapse
|
8
|
Visakan G, Su J, Moradian-Oldak J. Data from ameloblast cell lines cultured in 3D using various gel substrates in the presence of ameloblastin. Data Brief 2022; 42:108233. [PMID: 35586397 PMCID: PMC9108880 DOI: 10.1016/j.dib.2022.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
This article contains data related to the research article in this issue titled ameloblastin promotes polarization of ameloblast cell lines in a 3D cell culture system (Visakan et al., 2022). In the process of amelogenesis, the organic matrix components are pivotal to the establishment of ameloblast-matrix adhesion. Here we employ immortalized ameloblast cell lines and analyse their morphological changes in 3D cell culture when cultured in the presence of recombinant enamel matrix proteins- ameloblastin and amelogenin compared with controls. The recombinant proteins that were purified using high-performance liquid chromatography (HPLC) were characterized using SDS-gel electrophoresis. A 3D-on-top culture technique was employed, and the cells were analysed 24 and 72 h post inoculation using fluorescent and confocal microscopy for qualitative and quantitative changes. Aspect ratio of cells was measured and used as the parameter to compare between test proteins and controls. Repeated measurements of aspect ratio were recorded to analyse for statistical significance. Additionally, three distinct gel substrates were studied to examine the effect of composition and stiffness of the substrate on cell behaviour. The cells in the 3D culture were fixed and labelled using antibodies to junctional complex, polarity and tight junctional proteins following protocols for whole culture fixation. Co-localization between membrane and specific antibody labels were examined under confocal microscopy.
Collapse
|
9
|
Visakan G, Su J, Moradian-Oldak J. Ameloblastin promotes polarization of ameloblast cell lines in a 3-D cell culture system. Matrix Biol 2022; 105:72-86. [PMID: 34813898 PMCID: PMC8955733 DOI: 10.1016/j.matbio.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Studies on animal models with mutations in ameloblastin gene have suggested that the extracellular matrix protein ameloblastin (AMBN) plays important roles in controlling cell-matrix adhesion and ameloblast polarization during amelogenesis. In order to examine the function of AMBN in cell polarization and morphology, we developed an in vitro 3D cell culture model to examine the effect of AMBN and amelogenin (AMEL) addition on ameloblast cell lines. We further used high resolution confocal microscopy to detect expression of polarization markers in response to AMBN addition. Addition of AMBN to the 3D culture matrix resulted in the clustering and elongation (higher aspect ratio) of ALC in a dose dependent manner. The molar concentration of AMEL required to exact this response from ALC was 2.75- times greater than that of AMBN. This polarization effect of ameloblastin was attributable directly to an evolutionary conserved domain within its exon 5-encoded region. The lack of exon 6-encoded region also influenced AMBN-cell interactions but to a lesser extent. The clusters formed with AMBN were polarized with expression of E-cadherin, Par3 and Cldn1 assembly at the nascent cell-cell junctions. The elongation effect was specific to epithelial cells of ameloblastic lineage ALC and LS8 cells. Our data suggest that AMBN may play critical signaling roles in the initiation of cell polarity by acting as a communicator between cell-cell and cell-matrix interactions. Our investigation has important implications for understanding the function of ameloblastin in enamel-cell matrix adhesion and the outcomes may contribute to efforts to develop strategies for enamel tissue regeneration.
Collapse
|
10
|
Abstract
The extracellular matrix (ECM) is a highly dynamic amalgamation of structural and signaling molecules whose quantitative and qualitative modifications drive the distinct programmed morphologic changes required for tissues to mature into their functional forms. The craniofacial complex houses a diverse array of tissues, including sensory organs, glands, and components of the musculoskeletal, neural, and vascular systems, alongside several other highly specialized tissues to form the most complex part of the vertebrate body. Through cell-ECM interactions, the ECM coordinates the cell movements, shape changes, differentiation, gene expression changes, and other behaviors that sculpt developing organs. In this review, we focus on several common key roles of the ECM to shape developing craniofacial organs and tissues. We summarize recent advances in our understanding of the ability of the ECM to biochemically and biomechanically orchestrate major events of craniofacial development, and we discuss how dysregulated ECM dynamics contributes to disease and disorders. As we expand our understanding of organ-specific matrix functionality and composition, we will improve our ability to rationally modify matrices to promote regeneration and/or prevent degenerative outcomes in vitro and in vivo.
Collapse
Affiliation(s)
- D A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - K M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Abstract
Biomineralization of enamel, dentin, and bone involves the deposition of apatite mineral crystals within an organic matrix. Bone and teeth are classic examples of biomaterials with unique biomechanical properties that are crucial to their function. The collagen-based apatite mineralization and the important function of noncollagenous proteins are similar in dentin and bone; however, enamel is formed in a unique amelogenin-containing protein matrix. While the structure and organic composition of enamel are different from those of dentin and bone, the principal molecular mechanisms of protein-protein interactions, protein self-assembly, and control of crystallization events by the organic matrix are common among these apatite-containing tissues. This review briefly summarizes enamel and dentin matrix components and their interactions with other extracellular matrix components and calcium ions in mediating the mineralization process. We highlight the crystallization events that are controlled by the protein matrix and their interactions in the extracellular matrix during enamel and dentin biomineralization. Strategies for peptide-inspired biomimetic growth of tooth enamel and bioinspired mineralization of collagen to stimulate repair of demineralized dentin and bone tissue engineering are also addressed.
Collapse
Affiliation(s)
- J Moradian-Oldak
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - A George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|