1
|
Abukhalil MH, Al-Alami Z, Altaie HAA, Aladaileh SH, Othman SI, Althunibat OY, Alfwuaires MA, Almuqati AF, Alsuwayt B, Rudayni HA, Allam AA, Mahmoud AM. Galangin prevents gentamicin-induced nephrotoxicity by modulating oxidative damage, inflammation and apoptosis in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03449-1. [PMID: 39356319 DOI: 10.1007/s00210-024-03449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
The well-known antibiotic gentamicin (GEN) works well against a variety of pathogenic bacteria, nevertheless its therapeutic use might be limited by the possibility of nephrotoxicity. The naturally occurring flavonoid galangin (GAL) has several interesting anti-inflammatory and antioxidant properties. The present study evaluated the nephroprotective effect of GAL on GEN-induced renal injury. Rats received GAL for 14 days and GEN from day 8 to day 14. There was a significant increase in serum urea and creatinine along with several histopathological changes in the kidney following GEN administration. GEN-treated rats also showed increased levels of kidney MDA and NO, and decreased GSH content and activities of antioxidant enzymes. Rats received GEN also demonstrated increased NF-κB p65, iNOS, TNF-α, IL-1β and IL-6 levels in the kidney. GAL remarkably prevented tissue injury, attenuated MDA and NO levels, improved antioxidants, and decreased levels of inflammatory mediators in the kidney of GEN-treated rats. Furthermore, GEN-administrated rats exhibited increased Bax and caspase-3 with concomitant decline in Bcl-2 levels in the kidney, an effect that GAL attenuated. In conclusion, GAL prevents GEN-induced nephrotoxicity by attenuating oxidative stress, inflammation, and apoptosis and augmenting antioxidant defense, suggesting its therapeutic potential against drug nephrotoxicity.
Collapse
Affiliation(s)
- Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an, 71111, Jordan.
- Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an, 71111, Jordan.
| | - Zina Al-Alami
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hayman A A Altaie
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-kitab University, Kirkuk, 36001, Iraq
| | - Saleem H Aladaileh
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al- Batin, 31991, Saudi Arabia
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Osama Y Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an, 71111, Jordan
| | - Manal A Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Afaf F Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, 31991, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al- Batin, 31991, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ayman M Mahmoud
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
2
|
Ayusso LL, Girol AP, Ribeiro Souza H, Yoshikawa AH, de Azevedo LR, Carlos CP, Volpini RA, Schor N, Burdmann EA. The anti-inflammatory properties of green tea extract protect against gentamicin-induced kidney injury. Biomed Pharmacother 2024; 179:117267. [PMID: 39173271 DOI: 10.1016/j.biopha.2024.117267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
We assessed in vivo the protective effects and underlying antioxidant and anti-inflammatory properties of dry green tee extract (GTE) on glomerular and tubular kidney function and structure in an experimental model of gentamicin (GEN)-induced nephrotoxicity. Wistar rats were divided into four groups and treated daily for 10 days. The control group received distilled water; the GTE group received 20 μg/g body weight (BW) GTE by gavage; the GEN group received 100 mg/g BW GEN intraperitoneally; and the GEN+GTE group received GTE and GEN simultaneously, as described above. At the beginning and end of treatment, the serum creatinine, fractional excretion of sodium and potassium, and plasma heme oxygenase (HO)-1 levels and oxidative stress (OS) were assessed. At the end of the experiment, kidney fragments were collected for histological evaluation and immunohistochemical studies of cyclooxygenase (COX)-2 and nuclear factor (NF)kB. The levels of interleukin (IL)-1b, IL-4, IL-6, IL-10 and monocyte chemotactic protein (MCP)-1 were measured in kidney tissue. The results showed that GTE attenuated significantly kidney structural injury and prevented GEN-induced kidney functional injury (glomerular and tubular function). GTE significantly attenuated the kidney tissue increase of the proinflammatory mediators NF-kB, COX2, IL-1b and MCP-1 and significantly increased the kidney expression of the anti-inflammatory cytokines IL-6 and IL-10. However, GTE did not prevent OS increase in GEN-treated animals. In conclusion, GTE protected against GEN nephrotoxicity, likely due to direct blockade of the inflammatory cascade, which might had occurred independently of its antioxidant effect.
Collapse
Affiliation(s)
- Luis L Ayusso
- Division of Nephrology, University Center Padre Albino (UNIFIPA), Catanduva, SP 15809144, Brazil.
| | - Ana P Girol
- Experimental and Clinical Research Center (CEPEC), University Center Padre Albino (UNIFIPA), Catanduva, SP 15809144, Brazil; Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil.
| | - Helena Ribeiro Souza
- Experimental and Clinical Research Center (CEPEC), University Center Padre Albino (UNIFIPA), Catanduva, SP 15809144, Brazil.
| | - Ariane H Yoshikawa
- Experimental and Clinical Research Center (CEPEC), University Center Padre Albino (UNIFIPA), Catanduva, SP 15809144, Brazil.
| | - Lucas R de Azevedo
- Experimental and Clinical Research Center (CEPEC), University Center Padre Albino (UNIFIPA), Catanduva, SP 15809144, Brazil.
| | - Carla P Carlos
- Experimental Research Laboratory, School of Medicine, (FACERES), São José do Rio Preto, SP 15090305, Brazil.
| | - Rildo A Volpini
- LIM 12, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246903, Brazil.
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP 04023062, Brazil
| | - Emmanuel A Burdmann
- LIM 12, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246903, Brazil.
| |
Collapse
|
3
|
Chen L, Hu J, Lu J, Gong X. Bibliometric and visual analysis of immunisation associated with acute kidney injury from 2003 to 2023. Front Pharmacol 2024; 15:1388527. [PMID: 39011500 PMCID: PMC11246997 DOI: 10.3389/fphar.2024.1388527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
Objective This study aims to conduct a detailed bibliometric and visual analysis of acute kidney injury (AKI) and immune-related research conducted over the past two decades, focusing on identifying emerging trends and key areas of interest. Methods The Web of Science Core Collection (WoSCC) was utilised for the meticulous examination of various parameters including publication volume, authorship, geographic distribution, institutional contributions, journal sources, prevalent keywords and citation frequencies. Data were intricately visualised and interpreted using VOSviewer, CiteSpace and Excel 365 software. Results Analysis of the WoSCC database revealed 3,537 articles on AKI and immunisation, originating from 94 countries and regions, involving 3,552 institutions and authored by 18,243 individuals. Notably, the top five countries contributing to this field were the United States, China, Germany, Italy and the United Kingdom, with the United States leading with 35.76% of total publications. Among the 3,552 contributing institutions, those in the United States were predominant, with Harvard University leading with 134 papers and 3,906 citations. Key journals driving productivity included Frontiers in Immunology, Kidney International, Journal of the American Society of Nephrology and International Journal of Molecular Sciences, with Kidney International being the most cited, followed by Journal of the American Society of Nephrology and New England Journal of Medicine. Prominent authors in the field included Ronco Claudio, Okusa Mark D and Anders, Hans-Joachim. Co-citation clustering and timeline analysis highlighted recent research foci such as COVID-19, immune checkpoint inhibitors, regulated necrosis, cirrhosis and AKI. Keyword analysis identified "inflammation," "ischaemia-reperfusion injury," "sepsis," "covid-19," and "oxidative stress" as prevalent terms. Conclusion This study provides the first bibliometric analysis of AKI and immune research, offering a comprehensive overview of research hotspots and evolving trends within the field.
Collapse
Affiliation(s)
- Ling Chen
- Department of Nephrology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephrology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianrao Lu
- Department of Nephrology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuezhong Gong
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Chen W, Zhang K, Cui H, Li J, Yao D, Wang S, Tian X, Kou W, Huang J, Wang H, Wang J. Baicalin-2-ethoxyethyl ester alleviates gentamicin-induced acute kidney injury via NF-κB signaling pathway. Biomed Pharmacother 2024; 172:116276. [PMID: 38377733 DOI: 10.1016/j.biopha.2024.116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Drug nephrotoxicity has high fatality rates and complications. To study this conditional, traditionally, Gentamicin (GM) is used to induce acute injury and establish a nephrotic syndrome model. Baicalin, a flavonoid derived from baicalin with potent anti-inflammatory and antioxidant activity, has been used to treat various inflammatory diseases. This study aims to investigate the process of baicalin-2-ethoxyethyl ester (BAE) synthesis and its therapeutic effect on GM-induced acute kidney injury (AKI). Briefly, baicalin was processed by various reactions to yield BAE. A GM-induced AKI model was established for in vivo evaluation of the protective effect and mechanism of BAE. The results indicated that BAE reduced serum creatinine and urea nitrogen levels and improved pathological alterations, inflammatory responses, and oxidative stress in renal tissues. Furthermore, it was revealed that BAE might exert anti-inflammatory and anti-oxidative responses during AKI via the NF-κB signaling pathway regulation. The findings imply that BAE has a protective impact on the kidneys and might serve as a potent medicine for treating renal damage.
Collapse
Affiliation(s)
- Wenhua Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| | - Huanyue Cui
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Jiacun Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Shuyun Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Weibing Kou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) Harbin Medical University, Harbin 150081, China; Shenzhen Honghui Biopharmaceutical Co., Ltd., Shenzhen 518000, China
| | - Hangyu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| | - Jinhui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China; Department of Medicinal Chemistry and Natural Medicine Chemistry (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) Harbin Medical University, Harbin 150081, China; Shenzhen Honghui Biopharmaceutical Co., Ltd., Shenzhen 518000, China.
| |
Collapse
|
5
|
Iqubal A, Najmi AK, Md S, Alkreathy HM, Ali J, Syed MA, Haque SE. Oral delivery of nerolidol alleviates cyclophosphamide-induced renal inflammation, apoptosis, and fibrosis via modulation of NF-κB/cleaved caspase-3/TGF-β signaling molecules. Drug Deliv 2023; 30:2241661. [PMID: 37559381 PMCID: PMC10946274 DOI: 10.1080/10717544.2023.2241661] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
Cyclophosphamide (CP) is one of the most extensively used antineoplastic drug, but the nephrotoxicity caused by this drug is a major limiting factor for its use. Nerolidol (NERO) is a natural bioactive compound with diverse pharmacological actions. In Vitro and in vivo study was performed using HK-2 renal cells and Swiss Albino mice. Cell lines and animals were treated with NERO 25 and 50 µM + 30 µM CP (in vitro), 200 and 400 mg/kg, p.o. NERO from day 1 to day 15 + 200 mg/kg, i.p. CP on day 17 as single intraperitoneal injection (in vivo). The makers of oxidative stress, renal-specific injury markers, inflammation, apoptosis, fibrosis, and histopathological changes were studied. The study's outcome showed a significant reduction in the level of malonaldehyde and interleukin-6 (p < 0.01), tumor necrosis factor-α, IL-1β (p < 0.001), and an increase in the superoxide dismutase, catalase, glutathione and interleukin-10 level (p < 0.01), in the in vivo study when treated with NERO 400 and compared with CP 200. In Vitro study showed reduced expression of nuclear factor kappa light chain enhancer of activated B cells, cleaved caspase-3, kidney injury molecule-1 and transforming growth factor-β-1 (p < 0.001), when treated with NERO 50 µM whereas NERO 25 µM only reduced the level of cleaved caspase-3 (p < 0.05) when compared with 30 µM. NERO 400 also reduced uric acid (p < 0.05), urea (p < 0.01), blood urea nitrogen, and serum creatinine levels (p < 0.001) and increased the level of blood-urea-nitrogen/creatinine ratio (p < 0.001). Additionally, the level of fibrosis-specific markers such as transforming growth factor-β1, hyaluronic acid (p < 0.01), 4-hydroxyproline, a collagen-rich area in Masson's' trichome stain, and Smad3 expression was also significantly reduced (p < 0.001). Furthermore, the outcome of multiple renal staining showed structural reversal aberrations, reduction of the thick basement membrane, and glycogen level toward normal when treated with NERO 400. Thus, the study showed a novel mechanistic modality of NERO against cyclophosphamide-induced renal toxicity. The outcome of this study can be considered a step closer to the development of an adjuvant to mitigate cyclophosphamide-induced renal toxicity among patients treated with cyclophosphamide.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
6
|
Zhang L, Miao M, Xu X, Bai M, Wu M, Zhang A. From Physiology to Pathology: The Role of Mitochondria in Acute Kidney Injuries and Chronic Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:342-357. [PMID: 37901706 PMCID: PMC10601966 DOI: 10.1159/000530485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/18/2023] [Indexed: 10/31/2023]
Abstract
Background Renal diseases remain an increasing public health issue affecting millions of people. The kidney is a highly energetic organ that is rich in mitochondria. Numerous studies have demonstrated the important role of mitochondria in maintaining normal kidney function and in the pathogenesis of various renal diseases, including acute kidney injuries (AKIs) and chronic kidney diseases (CKDs). Summary Under physiological conditions, fine-tuning mitochondrial energy balance, mitochondrial dynamics (fission and fusion processes), mitophagy, and biogenesis maintain mitochondrial fitness. While under AKI and CKD conditions, disruption of mitochondrial energy metabolism leads to increased oxidative stress. In addition, mitochondrial dynamics shift to excessive mitochondrial fission, mitochondrial autophagy is impaired, and mitochondrial biogenesis is also compromised. These mitochondrial injuries regulate renal cellular functions either directly or indirectly. Mitochondria-targeted approaches, containing genetic (microRNAs) and pharmaceutical methods (mitochondria-targeting antioxidants, mitochondrial permeability pore inhibitors, mitochondrial fission inhibitors, and biogenesis activators), are emerging as important therapeutic strategies for AKIs and CKDs. Key Messages Mitochondria play a critical role in the pathogenesis of AKIs and CKDs. This review provides an updated overview of mitochondrial homeostasis under physiological conditions and the involvement of mitochondrial dysfunction in renal diseases. Finally, we summarize the current status of mitochondria-targeted strategies in attenuating renal diseases.
Collapse
Affiliation(s)
- Lingge Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Miao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Althunibat OY, Abukhalil MH, Aladaileh SH, Qaralleh H, Al-Amarat W, Alfwuaires MA, Algefare AI, Namazi NI, Melebary SJ, Babalghith AO, Conte-Junior CA. Formononetin Ameliorates Renal Dysfunction, Oxidative Stress, Inflammation, and Apoptosis and Upregulates Nrf2/HO-1 Signaling in a Rat Model of Gentamicin-Induced Nephrotoxicity. Front Pharmacol 2022; 13:916732. [PMID: 35712704 PMCID: PMC9197219 DOI: 10.3389/fphar.2022.916732] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
Gentamicin (GEN) is a bactericidal aminoglycoside known to cause nephrotoxicity. Formononetin (FN) is a potent flavonoid that exhibits numerous promising pharmacological activities. In this study, we have assessed the nephroprotective efficacy of FN against GEN-induced renal injury in rats. Rats were orally administered with FN (60 mg/kg/day, for 2 weeks) and were co-treated with intraperitoneal (i.p.) injection of GEN (100 mg/kg/day) during the days 8–14. GEN-treated rats demonstrated increased urea and creatinine levels in serum associated with marked histopathological changes in the kidney. Malondialdehyde (MDA) and protein carbonyl contents were elevated, whereas glutathione concentration and catalase and superoxide dismutase activities were lowered in GEN-administered rats. The FN largely prevented tissue damage, attenuated renal function, reduced MDA and protein carbonyl, and enhanced antioxidant capacity in the kidney of GEN-administrated animals. The kidney of GEN-treated rats demonstrated elevated Bax and caspase-3 protein expression, accompanied by lowered Bcl-2 protein expression, an effect that FN attenuated. Moreover, FN treatment caused upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression in renal tissue of GEN-intoxicated animals. Collectively, FN protects against GEN-caused renal damage via exhibiting antioxidant, anti-inflammatory, and antiapoptotic activities and augmenting Nrf2 signaling, suggesting FN as a promising agent for preventing drug-induced organ damage.
Collapse
Affiliation(s)
- Osama Y. Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
- *Correspondence: Osama Y. Althunibat, ; Mohammad H. Abukhalil,
| | - Mohammad H. Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
- Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma’an, Jordan
- *Correspondence: Osama Y. Althunibat, ; Mohammad H. Abukhalil,
| | - Saleem H. Aladaileh
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Haitham Qaralleh
- Department of Medical Laboratory Sciences, Mutah University, Karak, Jordan
| | - Wesam Al-Amarat
- Department of Medical Support, Al-karak University College, Al-Balqa’ Applied University, As-Salt, Jordan
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulmohsen I. Algefare
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nader Ibrahim Namazi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madinah Al Munawarah, Saudi Arabia
| | - Sahar J. Melebary
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm al-qura University, Makkah, Saudi Arabia
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Prado LG, Barbosa AS. Understanding the Renal Fibrotic Process in Leptospirosis. Int J Mol Sci 2021; 22:ijms221910779. [PMID: 34639117 PMCID: PMC8509513 DOI: 10.3390/ijms221910779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is a neglected infectious disease caused by pathogenic species of the genus Leptospira. The acute disease is well-described, and, although it resembles other tropical diseases, it can be diagnosed through the use of serological and molecular methods. While the chronic renal disease, carrier state, and kidney fibrosis due to Leptospira infection in humans have been the subject of discussion by researchers, the mechanisms involved in these processes are still overlooked, and relatively little is known about the establishment and maintenance of the chronic status underlying this infectious disease. In this review, we highlight recent findings regarding the cellular communication pathways involved in the renal fibrotic process, as well as the relationship between renal fibrosis due to leptospirosis and CKD/CKDu.
Collapse
Affiliation(s)
- Luan Gavião Prado
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Angela Silva Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Correspondence:
| |
Collapse
|