1
|
Woolhouse F, Dierking I. Thin Cells of Polymer-Modified Liquid Crystals Described by Voronoi Diagrams. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1106. [PMID: 40077330 PMCID: PMC11902193 DOI: 10.3390/ma18051106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
We investigated patterns formed during the polymerization process of bifunctional monomers in a liquid crystal for both large polymer concentrations (polymer-dispersed liquid crystals, PDLC) and small concentrations (polymer-stabilized liquid crystals, PSLC). The resulting experimental patterns are reminiscent of Voronoi diagrams, so a reverse Voronoi algorithm was developed that provides the seed locations of cells, thus allowing a computational reproduction of the experimental patterns. Several metrics were developed to quantify the commonality between the faithful experimental patterns and the idealized and generated ones. This led to descriptions of the experimental patterns with accuracies better than 90% and showed that the curvature or concavity of the cell edges was below 2%. Possible reasons for the discrepancies between the original and generated Voronoi diagrams are discussed. The introduced algorithm and quantification of the patterns could be transferred to many other experimental problems, for example, melting of thin polymer films, ultra-thin metal films, or bio-membranes. The discrepancies between the experimental and ideal Voronoi diagrams are quantified, which may be useful in the quality control of privacy windows, reflective displays, or smart glass.
Collapse
Affiliation(s)
| | - Ingo Dierking
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| |
Collapse
|
2
|
Dogan SE, Ozturk C, Koc B. Design of patient-specific mandibular reconstruction plates and a hybrid scaffold. Comput Biol Med 2025; 184:109380. [PMID: 39602978 DOI: 10.1016/j.compbiomed.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Managing segmental mandibular defects remains challenging, requiring a multidisciplinary approach despite the remarkable progress in mandibular reconstruction plates, finite element methods, computer-aided design and manufacturing techniques, and novel surgical procedures. Complex surgeries require a comprehensive approach, as using only reconstruction plates or tissue scaffolds may not be adequate for optimal results. The limitations of the treatment options should be investigated towards a patient-specific trend to provide shorter surgery time, better healing, and lower costs. Integrated hybrid scaffold systems are promising in improving mechanical properties and facilitating healing. By combining different materials and structures, hybrid scaffolds can provide enhanced support and stability to the tissue regeneration process, leading to better patient outcomes. The use of such systems represents a significant advancement in tissue engineering and a wide range of medical procedures. MATERIALS AND METHODS A head and neck computed tomography (CT) data of a patient with odontogenic myxoma was used for creating a three-dimensional (3D) mandible model. Virtual osteotomies were performed to create a segmental defect model, including the angulus mandibulae region. The first mandibular reconstruction plate was designed. Finite elemental analyses (FEA) and topology optimizations were performed to create two different reconstruction plates for different treatment scenarios. The FEA were performed for the resulting two plates to assess their biomechanical performance. To provide osteoconductive and osteoinductive properties a scaffold was designed using the defect area. A biomimetic Tricalcium phosphate-Polycaprolactone (TCP-PCL) hybrid bone scaffold enhanced with Hyaluronic acid dipping was manufactured. RESULTS The results of the in-silico analysis indicate that the designed reconstruction plates possess robust biomechanical performance and demonstrate remarkable stability under the most rigorous masticatory activities. Using the Voronoi pattern decreased the mass by %37 without losing endurance. Using reconstruction plates and hybrid scaffolds exhibits promising potential for clinical applications, subject to further in vivo and clinical studies.
Collapse
Affiliation(s)
- Sait Emre Dogan
- Bogazici University, Institute of Biomedical Engineering, Istanbul, 34684, Turkiye.
| | - Cengizhan Ozturk
- Bogazici University, Institute of Biomedical Engineering, Istanbul, 34684, Turkiye.
| | - Bahattin Koc
- 3D Bioprinting Laboratory, Sabanci University Nanotechnology Research and Application Center, Istanbul, 34956, Turkiye; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkiye.
| |
Collapse
|
3
|
Herath B, Laubach M, Suresh S, Schmutz B, Little JP, Yarlagadda PKDV, Delbrück H, Hildebrand F, Hutmacher DW, Wille ML. Modular design workflow for 3D printable bioresorbable patient-specific bone scaffolds: extended features and clinical validation. Front Bioeng Biotechnol 2024; 12:1404481. [PMID: 39628649 PMCID: PMC11611564 DOI: 10.3389/fbioe.2024.1404481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
A previously in-house developed patient-specific scaffold design workflow was extended with new features to overcome several limitations and to broaden its adaptability to diverse bone defects, thereby enhancing its fit for routine clinical use. It was applied to three clinical cases for further validation. A virtual surgical resection tool was developed to remove regions of the bone defect models. The minor cavity fill module enabled the generation of scaffold designs with smooth external surfaces and the segmental defect fill module allowed a versatile method to fill a segmental defect cavity. The boundary representation method based surgical approach module in the original workflow was redeveloped to use functional representation, eliminating previously seen resolution dependant artefacts. Lastly, a method to overlay the scaffold designs on computed tomography images of the defect for design verification by the surgeon was introduced. The extended workflow was applied to two ongoing clinical case studies of a complex bilateral femoral defect and a humerus defect, and also to a case of a large volume craniomaxillofacial defect. It was able to successfully generate scaffolds without any obstructions to their surgical insertion which was verified by digital examination as well as using physical 3D printed models. All produced surface meshes were free from 3D printing mesh errors. The scaffolds designed for the ongoing cases were 3D printed and successfully surgically implanted, providing confidence in the extended modular workflow's ability to be applied to a broad range of diverse clinical cases.
Collapse
Affiliation(s)
- Buddhi Herath
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia
- Jamieson Trauma Institute, Metro North Hospital and Health Service, Brisbane, Australia
| | - Markus Laubach
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Sinduja Suresh
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia
- Biomechanics and Spine Research Group at the Centre for Children’s Health Research, Queensland University of Technology, Brisbane, Australia
| | - Beat Schmutz
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia
- Jamieson Trauma Institute, Metro North Hospital and Health Service, Brisbane, Australia
| | - J. Paige Little
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia
- Biomechanics and Spine Research Group at the Centre for Children’s Health Research, Queensland University of Technology, Brisbane, Australia
| | - Prasad K. D. V. Yarlagadda
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia
| | - Heide Delbrück
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Dietmar W. Hutmacher
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Marie-Luise Wille
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
4
|
Cardoso FRGR, Grillo R. Maxillary rehabilitation after zygomatic implant sequelae using custom subperiosteal implants: A case study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102154. [PMID: 39551184 DOI: 10.1016/j.jormas.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/10/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Despite technological advancements, maxillary rehabilitation remains a significant challenge in Oral and Maxillofacial Surgery. This paper presents the case of a patient who underwent multiple previous procedures for prosthetic rehabilitation without achieving the desired results. The most recent intervention, which resulted in some sequelae, involved the placement of bilateral zygomatic implants. After unsuccessful attempts to maintain these implants, the decision was made to remove them and place a custom subperiosteal implant, produced via additive manufacturing. The patient has now been successfully rehabilitated with these implants for over a year, with no complaints and a notable improvement in her quality of life. The rehabilitation of severely atrophic maxillae using custom subperiosteal implants has proven to be an excellent alternative, offering predictability, the possibility of virtual planning and simulation, and the ability to rehabilitate extensive bone defects.
Collapse
Affiliation(s)
| | - Ricardo Grillo
- Department of Oral and Maxillofacial Surgery, Faculdade Patos de Minas, Brasília-DF, Brazil; Oral and Maxillofacial Surgery Training Program, Foundation of Dentistry - Fundecto, University of São Paulo, São Paulo-SP, Brazil.
| |
Collapse
|
5
|
Wang X, Mu M, Yan J, Han B, Ye R, Guo G. 3D printing materials and 3D printed surgical devices in oral and maxillofacial surgery: design, workflow and effectiveness. Regen Biomater 2024; 11:rbae066. [PMID: 39169972 PMCID: PMC11338467 DOI: 10.1093/rb/rbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 08/23/2024] Open
Abstract
Oral and maxillofacial surgery is a specialized surgical field devoted to diagnosing and managing conditions affecting the oral cavity, jaws, face and related structures. In recent years, the integration of 3D printing technology has revolutionized this field, offering a range of innovative surgical devices such as patient-specific implants, surgical guides, splints, bone models and regenerative scaffolds. In this comprehensive review, we primarily focus on examining the utility of 3D-printed surgical devices in the context of oral and maxillofacial surgery and evaluating their efficiency. Initially, we provide an insightful overview of commonly utilized 3D-printed surgical devices, discussing their innovations and clinical applications. Recognizing the pivotal role of materials, we give consideration to suitable biomaterials and printing technology of each device, while also introducing the emerging fields of regenerative scaffolds and bioprinting. Furthermore, we delve into the transformative impact of 3D-printed surgical devices within specific subdivisions of oral and maxillofacial surgery, placing particular emphasis on their rejuvenating effects in bone reconstruction, orthognathic surgery, temporomandibular joint treatment and other applications. Additionally, we elucidate how the integration of 3D printing technology has reshaped clinical workflows and influenced treatment outcomes in oral and maxillofacial surgery, providing updates on advancements in ensuring accuracy and cost-effectiveness in 3D printing-based procedures.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Mu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiazhen Yan
- School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Han
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, China, Shihezi 832002, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Gang Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Fontana C, Cappetti N. A novel procedure for medial axis reconstruction of vessels from Medical Imaging segmentation. Heliyon 2024; 10:e31769. [PMID: 38845885 PMCID: PMC11153195 DOI: 10.1016/j.heliyon.2024.e31769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
A procedure for reconstructing the central axis from diagnostic image processing is presented here, capable of solving the widespread problem of stepped shape effect that characterizes the most common algorithmic tools for processing the central axis for diagnostic imaging applications through the development of an algorithm correcting the spatial coordinates of each point belonging to the axis from the use of a common discrete image skeleton algorithm. The procedure is applied to the central axis traversing the vascular branch of the cerebral system, appropriately reconstructed from the processing of diagnostic images, using investigations of the local intensity values identified in adjacent voxels. The percentage intensity of the degree of adherence to a specific anatomical tissue acts as an attraction pole in the identification of the spatial center on which to place each point of the skeleton crossing the investigated anatomical structure. The results were shown in terms of the number of vessels identified overall compared to the original reference model. The procedure demonstrates high accuracy margin in the correction of the local coordinates of the central points that permits to allocate precise dimensional measurement of the anatomy under examination. The reconstruction of a central axis effectively centered in the region under examination represents a fundamental starting point in deducing, with a high margin of accuracy, key informations of a geometric and dimensional nature that favours the recognition of phenomena of shape alterations ascribable to the presence of clinical pathologies.
Collapse
Affiliation(s)
- C. Fontana
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, 84084, Italy
| | - N. Cappetti
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, 84084, Italy
| |
Collapse
|
7
|
Li J, Yang Y, Sun Z, Peng K, Liu K, Xu P, Li J, Wei X, He X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio 2024; 24:100934. [PMID: 38234458 PMCID: PMC10792490 DOI: 10.1016/j.mtbio.2023.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
A porous structure is essential for bone implants because it increases the bone ingrowth space and improves mechanical and biological properties. The biomimetically designed porous Voronoi scaffold can reconstruct the structure and function of cancellous bone; however, its comprehensive properties need to be investigated further. In this study, algorithms based on scaling factors were used to design the Voronoi scaffolds. Classic approaches, such as computer-aided design and the implicit surface method, have been used to design Diamond, Gyroid, and I-WP scaffolds as controls. All scaffolds were prepared by selective laser melting of titanium alloys and three-dimensional printing. Mechanical tests, finite element analysis, and in vitro and in vivo experiments were performed to investigate the biomechanical, cytologic, and osteogenic performance of the scaffolds, while computational fluid dynamics simulations were used to explore the underlying mechanisms. Diamond scaffolds have a better loading capacity, and the mechanical behaviors and fluid flow of Voronoi scaffolds are similar to those of the human trabecular bone. Cells showed more proliferation and distribution on the Diamond and Voronoi scaffolds and exhibited evident differentiation on Gyroid and Voronoi scaffolds. Bone formation was apparent on the inner part of the Gyroid, the outer part of the I-WP, and the entire Diamond and Voronoi scaffolds. The hydrodynamic properties and stimulus response of cells influenced by the porous structure account for the varied biological performance of the scaffolds. The Voronoi scaffolds with bionic mechanical behavior and an appropriate hydrodynamic response exhibit evident cell growth and osteogenesis, making them preferable for porous structural bone implants.
Collapse
Affiliation(s)
- Jialiang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Kan Peng
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Kaixin Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Jun Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
8
|
Haque F, Luscher AF, Mitchell KAS, Sutradhar A. Optimization of Fixations for Additively Manufactured Cranial Implants: Insights from Finite Element Analysis. Biomimetics (Basel) 2023; 8:498. [PMID: 37887630 PMCID: PMC10603949 DOI: 10.3390/biomimetics8060498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
With the emergence of additive manufacturing technology, patient-specific cranial implants using 3D printing have massively influenced the field. These implants offer improved surgical outcomes and aesthetic preservation. However, as additive manufacturing in cranial implants is still emerging, ongoing research is investigating their reliability and sustainability. The long-term biomechanical performance of these implants is critically influenced by factors such as implant material, anticipated loads, implant-skull interface geometry, and structural constraints, among others. The efficacy of cranial implants involves an intricate interplay of these factors, with fixation playing a pivotal role. This study addresses two critical concerns: determining the ideal number of fixation points for cranial implants and the optimal curvilinear distance between those points, thereby establishing a minimum threshold. Employing finite element analysis, the research incorporates variables such as implant shapes, sizes, materials, the number of fixation points, and their relative positions. The study reveals that the optimal number of fixation points ranges from four to five, accounting for defect size and shape. Moreover, the optimal curvilinear distance between two screws is approximately 40 mm for smaller implants and 60 mm for larger implants. Optimal fixation placement away from the center mitigates higher deflection due to overhangs. Notably, a symmetric screw orientation reduces deflection, enhancing implant stability. The findings offer crucial insights into optimizing fixation strategies for cranial implants, thereby aiding surgical decision-making guidelines.
Collapse
Affiliation(s)
- Fariha Haque
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA; (F.H.); (A.F.L.)
| | - Anthony F. Luscher
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA; (F.H.); (A.F.L.)
| | - Kerry-Ann S. Mitchell
- Department of Plastic Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Alok Sutradhar
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA; (F.H.); (A.F.L.)
| |
Collapse
|
9
|
Moraru E, Stoica AM, Donțu O, Cănănău S, Stoica NA, Constantin V, Cioboată DD, Bădiță-Voicu LL. Mechanical and Surface Characteristics of Selective Laser Melting-Manufactured Dental Prostheses in Different Processing Stages. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6141. [PMID: 37763418 PMCID: PMC10533055 DOI: 10.3390/ma16186141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Due to the expansion of the use of powder bed fusion metal additive technologies in the medical field, especially for the realization of dental prostheses, in this paper, the authors propose a comparative experimental study of the mechanical characteristics and the state of their microscale surfaces. The comparison was made from material considerations starting from two dental alloys commonly used to realize dental prostheses: Ni-Cr and Co-Cr, but also technologies for obtaining selective laser melting (SLM) and conventional casting. In addition, to compare the performances with the classical casting technology, for the dental prostheses obtained through SLM, the post-processing stage in which they are in a preliminary finishing and polished state was considered. Therefore, for the determination of important mechanical characteristics and the comparative study of dental prostheses, the indentation test was used, after which the hardness, penetration depths (maximum, permanent, and contact depth), contact stiffness, and contact surface were established, and for the determination of the microtopography of the surfaces, atomic force microscopy (AFM) was used, obtaining the local areal roughness parameters at the miniaturized scale-surface average roughness, root-mean-square roughness (RMS), and peak-to-peak values. Following the research carried out, several interesting conclusions were drawn, and the superiority of the SLM technology over the classic casting method for the production of dental prostheses in terms of some mechanical properties was highlighted. At the same time, the degree of finishing of dental prostheses made by SLM has a significant impact on the mechanical characteristics and especially the local roughness parameters on a miniaturized scale, and if we consider the same degree of finishing, no major differences are observed in the roughness parameters of the surfaces of the prostheses produced by different technologies.
Collapse
Affiliation(s)
- Edgar Moraru
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Alina-Maria Stoica
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Octavian Donțu
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Sorin Cănănău
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Nicolae-Alexandru Stoica
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Victor Constantin
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Daniela-Doina Cioboată
- The National Institute of Research and Development in Mechatronics and Measurement Technique, 6-8 Soseaua Pantelimon, 021631 Bucharest, Romania; (D.-D.C.); (L.-L.B.-V.)
| | - Liliana-Laura Bădiță-Voicu
- The National Institute of Research and Development in Mechatronics and Measurement Technique, 6-8 Soseaua Pantelimon, 021631 Bucharest, Romania; (D.-D.C.); (L.-L.B.-V.)
| |
Collapse
|
10
|
Robinson DL, Bucknill A, Ferragina A, Campbell C, Lee PVS. Fixation of pelvic acetabular fractures using 3D-printed fracture plates: a cadaver study. J Orthop Surg Res 2023; 18:360. [PMID: 37194079 DOI: 10.1186/s13018-023-03756-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/25/2023] [Indexed: 05/18/2023] Open
Abstract
Open reduction and internal fixation of pelvic acetabular fractures are challenging due to the limited surgical exposure from surrounding abdominal tissue. There have been a number of recent trials using metallic 3D-printed pelvic fracture plates to simplify and improve various elements of these fracture fixation surgeries; however, the amount of time and accuracy involved in the design and implantation of customised plates have not been well characterised. This study recorded the amount of time related to the design, manufacture and implantation of six customised fracture plates for five cadaveric pelvic specimens with acetabular fracture, while manufacturing, and surgical accuracy was calculated from computed tomography imaging. Five of the fracture plates were designed within 9.5 h, while the plate for a pelvis with a pre-existing fracture plate took considerably longer (20.2 h). Manufacturing comprised 3D-printing the plates in Ti6Al4V with a sintered laser melting (SLM) 3D-printer and post-processing (heat treatment, smoothing, tapping threads). The manufacturing times varied from 27.0 to 32.5 h, with longer times related to machining a thread for locking-head screws with a multi-axis computer numerical control (CNC) mill. For the surface of the plate in contact with the bone, the root-mean-square errors of the print varied from 0.10 to 0.49 mm. The upper range of these errors was likely the result of plate designs that were relatively long with thin cross-sections, a combination that gives rise to high thermal stresses when using a SLM 3D-printer. A number of approaches were explored to control the trajectories of locking or non-locking head screws including guides, printed threads or hand-taps; however, the plate with CNC-machined threads was clearly the most accurate with screw angulation errors of 2.77° (range 1.05-6.34°). The implanted position of the plates was determined visually; however, the limited surgical exposure and lack of intra-operative fluoroscopy in the laboratory led to high inaccuracies (translational errors of 1.74-13.00 mm). Plate mal-positioning would lead to increased risk of surgical injury due to misplaced screws; hence, it is recommended that technologies that can control plate positioning such as fluoroscopy or alignment guides need to be implemented into customised plate design and implantation workflow. Due to the plate misalignment and the severe nature of some acetabular fractures comprising numerous small bone fragments, the acetabular reduction exceeded the clinical limit of 2 mm for three pelvises. Although our results indicate that customised plates are unsuitable for acetabular fractures comprising six or more fragments, confirmation of this finding with a greater number of specimens is recommended. The times, accuracy and suggested improvements in the current study may be used to guide future workflows aimed at producing customised pelvic fracture plates for greater numbers of patients.
Collapse
Affiliation(s)
- Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Andrew Bucknill
- Department of Surgery, University of Melbourne, Melbourne, Australia
- Department of Orthopaedic Surgery, Royal Melbourne Hospital, Parkville, Australia
| | | | | | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
11
|
Ulmeanu ME, Mateș IM, Doicin CV, Mitrică M, Chirteș VA, Ciobotaru G, Semenescu A. Bespoke Implants for Cranial Reconstructions: Preoperative to Postoperative Surgery Management System. Bioengineering (Basel) 2023; 10:bioengineering10050544. [PMID: 37237614 DOI: 10.3390/bioengineering10050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury is a leading cause of death and disability worldwide, with nearly 90% of the deaths coming from low- and middle-income countries. Severe cases of brain injury often require a craniectomy, succeeded by cranioplasty surgery to restore the integrity of the skull for both cerebral protection and cosmetic purposes. The current paper proposes a study on developing and implementing an integrative surgery management system for cranial reconstructions using bespoke implants as an accessible and cost-effective solution. Bespoke cranial implants were designed for three patients and subsequent cranioplasties were performed. Overall dimensional accuracy was evaluated on all three axes and surface roughness was measured with a minimum value of 2.209 μm for Ra on the convex and concave surfaces of the 3D-printed prototype implants. Improvements in patient compliance and quality of life were reported in postoperative evaluations of all patients involved in the study. No complications were registered from both short-term and long-term monitoring. Material and processing costs were lower compared to a metal 3D-printed implants through the usage of readily available tools and materials, such as standardized and regulated bone cement materials, for the manufacturing of the final bespoke cranial implants. Intraoperative times were reduced through the pre-planning management stages, leading to a better implant fit and overall patient satisfaction.
Collapse
Affiliation(s)
- Mihaela-Elena Ulmeanu
- Faculty of Industrial Engineering and Robotics, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
| | - Ileana Mariana Mateș
- Central Military Emergency University Hospital "Dr. Carol Davila", 010825 Bucharest, Romania
| | - Cristian-Vasile Doicin
- Faculty of Industrial Engineering and Robotics, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
| | - Marian Mitrică
- Central Military Emergency University Hospital "Dr. Carol Davila", 010825 Bucharest, Romania
| | - Vasile Alin Chirteș
- Central Military Emergency University Hospital "Dr. Carol Davila", 010825 Bucharest, Romania
| | - Georgian Ciobotaru
- Central Military Emergency University Hospital "Dr. Carol Davila", 010825 Bucharest, Romania
| | - Augustin Semenescu
- Faculty of Materials Science and Engineering, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| |
Collapse
|
12
|
Sharma N, Zubizarreta-Oteiza J, Tourbier C, Thieringer FM. Can Steam Sterilization Affect the Accuracy of Point-of-Care 3D Printed Polyetheretherketone (PEEK) Customized Cranial Implants? An Investigative Analysis. J Clin Med 2023; 12:jcm12072495. [PMID: 37048579 PMCID: PMC10094830 DOI: 10.3390/jcm12072495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Polyetheretherketone (PEEK) has become the biomaterial of choice for repairing craniofacial defects over time. Prospects for the point-of-care (POC) fabrication of PEEK customized implants have surfaced thanks to the developments in three-dimensional (3D) printing systems. Consequently, it has become essential to investigate the characteristics of these in-house fabricated implants so that they meet the necessary standards and eventually provide the intended clinical benefits. This study aimed to investigate the effects of the steam sterilization method on the dimensional accuracy of POC 3D-printed PEEK customized cranial implants. The objective was to assess the influence of standard sterilization procedures on material extrusion-based 3D-printed PEEK customized implants with non-destructive material testing. Fifteen PEEK customized cranial implants were fabricated using an in-house material extrusion-based 3D printer. After fabrication, the cranial implants were digitalized with a professional-grade optical scanner before and after sterilization. The dimensional changes for the 3D-printed PEEK cranial implants were analyzed using medically certified 3D image-based engineering software. The material extrusion 3D-printed PEEK customized cranial implants displayed no statistically significant dimensional difference with steam sterilization (p > 0.05). Evaluation of the cranial implants’ accuracy revealed that the dimensions were within the clinically acceptable accuracy level with deviations under 1.00 mm. Steam sterilization does not significantly alter the dimensional accuracy of the in-house 3D-printed PEEK customized cranial implants.
Collapse
Affiliation(s)
- Neha Sharma
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167C, 4123 Allschwil, Switzerland
- Correspondence:
| | - Jokin Zubizarreta-Oteiza
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167C, 4123 Allschwil, Switzerland
| | - Céline Tourbier
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167C, 4123 Allschwil, Switzerland
| | - Florian M. Thieringer
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167C, 4123 Allschwil, Switzerland
| |
Collapse
|
13
|
Sivakumar NK, Palaniyappan S, Sekar V, Alodhayb A, Braim M. An optimization approach for studying the effect of lattice unit cell's design-based factors on additively manufactured poly methyl methacrylate cranio-implant. J Mech Behav Biomed Mater 2023; 141:105791. [PMID: 37004304 DOI: 10.1016/j.jmbbm.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/28/2023]
Abstract
In craniomaxillofacial surgery the inclusion of lattice structure on the Cranio-implants for the surgical procedure of cranial defects is difficult. Additive manufacturing open ups a huge space for the development of intricate profiles for complex surgical practices. Designing lattice structures with various design topologies has gained more interest in the medical community for reducing the weight of the implants in the cranial region. This research proposes the mimicking of cranial defective portion concerning bone-like porous structure by means of Poly methyl methacrylate (PMMA) material via 3D printing technology. The experiments were optimized by incorporating square-type porous lattice structure in the development of cranial implants. The design-based factors of the unit cell were enhanced with the aid of the Design of experiments (DOE) technique. L9 orthogonal array is developed by incorporating various design-based factors of the lattice unit cell like unit cell size (mm), skewing angle (°), wall thickness (mm), and unit cell orientation (°). The experiments are optimized with respect to obtaining better compressive strength and compressive strength/density of the prepared lattice structure incorporated polymeric samples. The result shows that for obtaining the maximum compressive strength in the porous square lattice-structured PMMA compression samples will be a lower cell size of 2 mm, a higher skewing angle of 30°, a higher wall thickness of 1 mm, and a unit cell orientation of 90°. The experimental optimized condition results of the design-based factors achieve the maximum compressive strength and compressive strength/density of 83.37 MPa and 189.73 MPa/g mm-3. The lattice structure orientated with 90° has a significant contribution towards reducing the development of structural deviations of incorporating square lattice structure on the PMMA polymeric material. Therefore, the topologically modified square lattice structure incorporated 3D printed PMMA material has a potential scope for the replacement of conventional maxillofacial cranial implants.
Collapse
|
14
|
Evans LM, Sözümert E, Keenan BE, Wood CE, du Plessis A. A Review of Image-Based Simulation Applications in High-Value Manufacturing. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1495-1552. [PMID: 36685137 PMCID: PMC9847465 DOI: 10.1007/s11831-022-09836-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Image-Based Simulation (IBSim) is the process by which a digital representation of a real geometry is generated from image data for the purpose of performing a simulation with greater accuracy than with idealised Computer Aided Design (CAD) based simulations. Whilst IBSim originates in the biomedical field, the wider adoption of imaging for non-destructive testing and evaluation (NDT/NDE) within the High-Value Manufacturing (HVM) sector has allowed wider use of IBSim in recent years. IBSim is invaluable in scenarios where there exists a non-negligible variation between the 'as designed' and 'as manufactured' state of parts. It has also been used for characterisation of geometries too complex to accurately draw with CAD. IBSim simulations are unique to the geometry being imaged, therefore it is possible to perform part-specific virtual testing within batches of manufactured parts. This novel review presents the applications of IBSim within HVM, whereby HVM is the value provided by a manufactured part (or conversely the potential cost should the part fail) rather than the actual cost of manufacturing the part itself. Examples include fibre and aggregate composite materials, additive manufacturing, foams, and interface bonding such as welding. This review is divided into the following sections: Material Characterisation; Characterisation of Manufacturing Techniques; Impact of Deviations from Idealised Design Geometry on Product Design and Performance; Customisation and Personalisation of Products; IBSim in Biomimicry. Finally, conclusions are drawn, and observations made on future trends based on the current state of the literature.
Collapse
Affiliation(s)
- Llion Marc Evans
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
- United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB UK
| | - Emrah Sözümert
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
| | - Bethany E. Keenan
- Cardiff School of Engineering, Cardiff University, Cardiff, CF24 3AA UK
| | - Charles E. Wood
- School of Mechanical & Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ UK
| | - Anton du Plessis
- Object Research Systems, Montreal, H3B 1A7 Canada
- Research Group 3DInnovation, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
15
|
Thimukonda Jegadeesan J, Baldia M, Basu B. Next-generation personalized cranioplasty treatment. Acta Biomater 2022; 154:63-82. [PMID: 36272686 DOI: 10.1016/j.actbio.2022.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Decompressive craniectomy (DC) is a surgical procedure, that is followed by cranioplasty surgery. DC is usually performed to treat patients with traumatic brain injury, intracranial hemorrhage, cerebral infarction, brain edema, skull fractures, etc. In many published clinical case studies and systematic reviews, cranioplasty surgery is reported to restore cranial symmetry with good cosmetic outcomes and neurophysiologically relevant functional outcomes in hundreds of patients. In this review article, we present a number of key issues related to the manufacturing of patient-specific implants, clinical complications, cosmetic outcomes, and newer alternative therapies. While discussing alternative therapeutic treatments for cranioplasty, biomolecules and cellular-based approaches have been emphasized. The current clinical practices in the restoration of cranial defects involve 3D printing to produce patient-specific prefabricated cranial implants, that provide better cosmetic outcomes. Regardless of the advancements in image processing and 3D printing, the complete clinical procedure is time-consuming and requires significant costs. To reduce manual intervention and to address unmet clinical demands, it has been highlighted that automated implant fabrication by data-driven methods can accelerate the design and manufacturing of patient-specific cranial implants. The data-driven approaches, encompassing artificial intelligence (machine learning/deep learning) and E-platforms, such as publicly accessible clinical databases will lead to the development of the next generation of patient-specific cranial implants, which can provide predictable clinical outcomes. STATEMENT OF SIGNIFICANCE: Cranioplasty is performed to reconstruct cranial defects of patients who have undergone decompressive craniectomy. Cranioplasty surgery improves the aesthetic and functional outcomes of those patients. To meet the clinical demands of cranioplasty surgery, accelerated designing and manufacturing of 3D cranial implants are required. This review provides an overview of biomaterial implants and bone flap manufacturing methods for cranioplasty surgery. In addition, tissue engineering and regenerative medicine-based approaches to reduce clinical complications are also highlighted. The potential use of data-driven computer applications and data-driven artificial intelligence-based approaches are emphasized to accelerate the clinical protocols of cranioplasty treatment with less manual intervention and shorter intraoperative time.
Collapse
Affiliation(s)
| | - Manish Baldia
- Department of Neurosurgery, Jaslok Hospital and Research Centre, Mumbai, Maharashtra 400026, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, CV Raman Road, Bangalore, Karnataka 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
16
|
Surgical planning and finite element analysis for the neurocraneal protection in cranioplasty with PMMA: A case study. Heliyon 2022; 8:e10706. [PMID: 36185133 PMCID: PMC9519503 DOI: 10.1016/j.heliyon.2022.e10706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
New developments in terms of additive manufacturing, computational tools and mathematical simulation techniques have favored the development of successful methodologies for the restoration or restitution of bone structures in the human body. Likewise, achievements in Materials Science have allowed the development of biocompatible composites capable of achieving mechanical characteristics and biological similarities comparable to those of natural bone. Without considering the advantages and disadvantages of some biomaterials with respect to others, this research aims to evaluate the surgical planning, the design process, the impact resistance and the critical deflection of a customized cranial implant manufactured from polymethylmethacrylate (PMMA). With the support of finite element methods (FEM), the level of neurocranial protection offered by the implant is assessed.
Collapse
|
17
|
A framework for the sustainability implications of 3D bioprinting through nature-inspired materials and structures. Biodes Manuf 2022. [DOI: 10.1007/s42242-021-00168-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Raheem AA, Hameed P, Whenish R, Elsen RS, G A, Jaiswal AK, Prashanth KG, Manivasagam G. A Review on Development of Bio-Inspired Implants Using 3D Printing. Biomimetics (Basel) 2021; 6:65. [PMID: 34842628 PMCID: PMC8628669 DOI: 10.3390/biomimetics6040065] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023] Open
Abstract
Biomimetics is an emerging field of science that adapts the working principles from nature to fine-tune the engineering design aspects to mimic biological structure and functions. The application mainly focuses on the development of medical implants for hard and soft tissue replacements. Additive manufacturing or 3D printing is an established processing norm with a superior resolution and control over process parameters than conventional methods and has allowed the incessant amalgamation of biomimetics into material manufacturing, thereby improving the adaptation of biomaterials and implants into the human body. The conventional manufacturing practices had design restrictions that prevented mimicking the natural architecture of human tissues into material manufacturing. However, with additive manufacturing, the material construction happens layer-by-layer over multiple axes simultaneously, thus enabling finer control over material placement, thereby overcoming the design challenge that prevented developing complex human architectures. This review substantiates the dexterity of additive manufacturing in utilizing biomimetics to 3D print ceramic, polymer, and metal implants with excellent resemblance to natural tissue. It also cites some clinical references of experimental and commercial approaches employing biomimetic 3D printing of implants.
Collapse
Affiliation(s)
- Ansheed A. Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Pearlin Hameed
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Ruban Whenish
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Renold S. Elsen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India;
| | - Aswin G
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India;
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Konda Gokuldoss Prashanth
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- Erich Schmid Institute of Materials Science, Austrian Academy of Science, Jahnstrasse 12, 8700 Leoben, Austria
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| |
Collapse
|
19
|
Sharma N, Welker D, Aghlmandi S, Maintz M, Zeilhofer HF, Honigmann P, Seifert T, Thieringer FM. A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction. J Clin Med 2021; 10:3563. [PMID: 34441859 PMCID: PMC8397160 DOI: 10.3390/jcm10163563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient's unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor.
Collapse
Affiliation(s)
- Neha Sharma
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland; (N.S.); (H.-F.Z.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (D.W.); (M.M.); (P.H.)
| | - Dennis Welker
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (D.W.); (M.M.); (P.H.)
| | - Soheila Aghlmandi
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, CH-4031 Basel, Switzerland;
| | - Michaela Maintz
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (D.W.); (M.M.); (P.H.)
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, CH-4132 Muttenz, Switzerland
| | - Hans-Florian Zeilhofer
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland; (N.S.); (H.-F.Z.)
| | - Philipp Honigmann
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (D.W.); (M.M.); (P.H.)
- Hand Surgery, Cantonal Hospital Baselland, CH-4410 Liestal, Switzerland
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, NL-1105 Amsterdam, The Netherlands
| | - Thomas Seifert
- Department of Mechanical and Process Engineering, University of Applied Sciences, DE-77652 Offenburg, Germany;
| | - Florian M. Thieringer
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland; (N.S.); (H.-F.Z.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (D.W.); (M.M.); (P.H.)
| |
Collapse
|
20
|
Sharma N, Aghlmandi S, Dalcanale F, Seiler D, Zeilhofer HF, Honigmann P, Thieringer FM. Quantitative Assessment of Point-of-Care 3D-Printed Patient-Specific Polyetheretherketone (PEEK) Cranial Implants. Int J Mol Sci 2021; 22:8521. [PMID: 34445228 PMCID: PMC8395180 DOI: 10.3390/ijms22168521] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advancements in medical imaging, virtual surgical planning (VSP), and three-dimensional (3D) printing have potentially changed how today's craniomaxillofacial surgeons use patient information for customized treatments. Over the years, polyetheretherketone (PEEK) has emerged as the biomaterial of choice to reconstruct craniofacial defects. With advancements in additive manufacturing (AM) systems, prospects for the point-of-care (POC) 3D printing of PEEK patient-specific implants (PSIs) have emerged. Consequently, investigating the clinical reliability of POC-manufactured PEEK implants has become a necessary endeavor. Therefore, this paper aims to provide a quantitative assessment of POC-manufactured, 3D-printed PEEK PSIs for cranial reconstruction through characterization of the geometrical, morphological, and biomechanical aspects of the in-hospital 3D-printed PEEK cranial implants. The study results revealed that the printed customized cranial implants had high dimensional accuracy and repeatability, displaying clinically acceptable morphologic similarity concerning fit and contours continuity. From a biomechanical standpoint, it was noticed that the tested implants had variable peak load values with discrete fracture patterns and failed at a mean (SD) peak load of 798.38 ± 211.45 N. In conclusion, the results of this preclinical study are in line with cranial implant expectations; however, specific attributes have scope for further improvements.
Collapse
Affiliation(s)
- Neha Sharma
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland; (N.S.); (H.-F.Z.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland;
| | - Soheila Aghlmandi
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, CH-4031 Basel, Switzerland;
| | - Federico Dalcanale
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts North-Western Switzerland, CH-4132 Muttenz, Switzerland; (F.D.); (D.S.)
| | - Daniel Seiler
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts North-Western Switzerland, CH-4132 Muttenz, Switzerland; (F.D.); (D.S.)
| | - Hans-Florian Zeilhofer
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland; (N.S.); (H.-F.Z.)
| | - Philipp Honigmann
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland;
- Hand Surgery, Cantonal Hospital Baselland, CH-4410 Liestal, Switzerland
- Amsterdam UMC, Department of Biomedical Engineering and Physics, University of Amsterdam, Amsterdam Movement Sciences, NL-1105 Amsterdam, The Netherlands
| | - Florian M. Thieringer
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland; (N.S.); (H.-F.Z.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland;
| |
Collapse
|