1
|
Zhang Z, Zhang N, Li M, Ma X, Qiu Y. Sappanone a alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis via activating the SIRT1/Nrf2 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8759-8770. [PMID: 38832987 DOI: 10.1007/s00210-024-03179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that cause pain and disability in adults. Chondrocyte ferroptosis is found to be involved in OA progression. Sappanone A has been found as an anti-inflammatory and antioxidative agent in several diseases. This study aims to investigate the effects of sappanone A on OA progression and chondrocyte ferroptosis. IL-1β-induced chondrocytes and destabilization of the medial meniscus (DMM)-induced rats were respectively used as the OA model in vitro and in vivo. The effects of sappanone A on inflammation, extracellular matrix (ECM) metabolism, and ferroptosis were determined. Our results showed that in IL-1β-induced chondrocytes, sappanone A suppressed the production of NO, PGE2, TNF-α, IL-6, iNOS, and COX2. Sappanone A also inhibited the expression of MMP3, MMP13, and ADAMTS5, while increasing collagen II expression. Moreover, sappanone A alleviated cytotoxicity and decreased the levels of intracellular ROS, lipid ROS, MDA, and iron, while increasing GSH levels. Additionally, sappanone A increased the protein expression of SLC7A11 and GPX4. Administration of ferroptosis activator reversed the inhibitory effects of sappanone A on IL-1β-induced inflammation and ECM degradation. More importantly, Sappanone A activated the Nrf2 signaling by targeting SIRT1. The inhibition of sappanone A on ferroptosis was greatly eliminated due to the addition of SIRT1 inhibitor. Furthermore, intra-articular injection of sappanone A mitigated cartilage destruction and ferroptosis in DMM-induced OA rats. In conclusion, sappanone A protects against inflammation and ECM degradation in OA via decreasing chondrocyte ferroptosis by activating the SIRT1/Nrf2 signaling. These findings deepen our understanding of chondrocyte ferroptosis in OA and highlight the therapeutic potential of sappanone A for OA.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Nanzhi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xing Ma
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yusheng Qiu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Zou X, Xu H, Qian W. The role and current research status of resveratrol in the treatment of osteoarthritis and its mechanisms: a narrative review. Drug Metab Rev 2024; 56:399-412. [PMID: 39376171 DOI: 10.1080/03602532.2024.2402751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease caused by various factors such as aging, obesity, trauma, and genetics. It is a challenging condition faced by orthopedic doctors in clinical practice and places a heavy burden on patients and their families. Currently, the treatment of OA primarily focuses on symptomatic relief and lacks ideal therapeutic methods. Resveratrol is a natural polyphenolic compound with anti-inflammatory and antioxidant properties, and in recent years, it has gained attention as a candidate drug for OA treatment. This article provides an overview of the research status on the role and mechanisms of resveratrol in treating OA. It has been found that resveratrol can prevent the development of OA by inhibiting inflammatory responses, protecting chondrocytes, maintaining cartilage homeostasis, promoting autophagy, and has shown certain therapeutic effects. This process may be related to the regulation of signaling pathways such as nuclear factor-kappa B (NF-κB), Toll-like receptor 4 (TLR4), and silent information regulator 1 (SIRT1). We summarize the current molecular mechanisms of resveratrol in treating OA, hoping to provide a reference for further research and application of resveratrol in OA treatment.
Collapse
Affiliation(s)
- Xiongfei Zou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hongjun Xu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Wenwei Qian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
3
|
Maouche A, Boumediene K, Baugé C. Bioactive Compounds in Osteoarthritis: Molecular Mechanisms and Therapeutic Roles. Int J Mol Sci 2024; 25:11656. [PMID: 39519204 PMCID: PMC11546619 DOI: 10.3390/ijms252111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is the most common and debilitating form of arthritis. Current therapies focus on pain relief and efforts to slow disease progression through a combination of drug and non-drug treatments. Bioactive compounds derived from plants show significant promise due to their anti-inflammatory, antioxidant, and tissue-protective properties. These natural compounds can help regulate the inflammatory processes and metabolic pathways involved in OA, thereby alleviating symptoms and potentially slowing disease progression. Investigating the efficacy of these natural agents in treating osteoarthritis addresses a growing demand for natural health solutions and creates new opportunities for managing this increasingly prevalent age-related condition. The aim of this review is to provide an overview of the use of some bioactive compounds from plants in modulating the progression of osteoarthritis and alleviating associated pain.
Collapse
Affiliation(s)
| | | | - Catherine Baugé
- UR7451 BIOCONNECT, Université de Caen Normandie, 14032 Caen, France; (A.M.); (K.B.)
| |
Collapse
|
4
|
Zhao W, Zhu Y, Wong SK, Muhammad N, Pang KL, Chin KY. Effects of resveratrol on biochemical and structural outcomes in osteoarthritis: A systematic review and meta-analysis of preclinical studies. Heliyon 2024; 10:e34064. [PMID: 39055794 PMCID: PMC11269911 DOI: 10.1016/j.heliyon.2024.e34064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/22/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background and objective Osteoarthritis (OA) is the most common age-related disease of joints with increasing global prevalence. Persistent inflammation within the joint space is speculated to be the cause of OA. Resveratrol is an anti-inflammatory and antioxidant compound which can influence cartilage metabolism through multiple signalling pathways. This systematic review and meta-analysis aimed to summarize the therapeutic effects of resveratrol in animal models of OA. Methods A comprehensive literature search was performed using PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, China Wanfang and VIP databases in May 2023. Studies on the effects of resveratrol in animal models of OA written in English or Mandarin, published from the inception of databases until the date of the search were considered. Results Fifteen eligibility studies were included and analysed. Resveratrol was shown to inhibit the secretion of interleukin-1β, tumour necrosis factor-α, interleukin-6, nitric oxide, and apoptosis of articular chondrocytes. Joint structure as indicated by Mankin scores was restored with resveratrol in animal OA models. Conclusion Resveratrol is a potential therapeutic agent for OA based on animal studies. Further evidence from well-planned human studies would be required to validate its clinical efficacies.
Collapse
Affiliation(s)
- Wenjian Zhao
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Malaysia
- Department of Pathology, College of Basic Medicine, Xiangnan University, 423000, Chenzhou City, China
| | - Yuezhi Zhu
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Malaysia
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, 79200, Iskandar Puteri, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Malaysia
| |
Collapse
|
5
|
Lawrence M, Goyal A, Pathak S, Ganguly P. Cellular Senescence and Inflammaging in the Bone: Pathways, Genetics, Anti-Aging Strategies and Interventions. Int J Mol Sci 2024; 25:7411. [PMID: 39000517 PMCID: PMC11242738 DOI: 10.3390/ijms25137411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM).
Collapse
Affiliation(s)
- Merin Lawrence
- School of Biological and Chemical Sciences, University of Galway, H91W2TY Galway, Ireland
| | - Abhishek Goyal
- RAS Life Science Solutions, Stresemannallee 61, 60596 Frankfurt, Germany
| | - Shelly Pathak
- Observational and Pragmatic Research Institute, 5 Coles Lane, Oakington, Cambridge CB24 3BA, UK
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| |
Collapse
|
6
|
Marco M, Jansen M, van der Weiden G, Reich E, Maatuf YH, Mastbergen SC, Dvir-Ginzberg M. Two-year post-distraction cartilage-related structural improvement is accompanied by increased serum full-length SIRT1. Arthritis Res Ther 2024; 26:106. [PMID: 38790038 PMCID: PMC11127335 DOI: 10.1186/s13075-024-03342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Previously, fragments from Sirtuin 1 (SIRT1) were identified in preclinical and clinical samples to display an increase in serum levels for N-terminal (NT) SIRT1 vs. C-terminal (CT) SIRT1, indicative of early signs of OA. Here we tested NT/CT SIRT1 levels as well as a novel formulated sandwich assay to simultaneously detect both domains of SIRT1 in a manner that may inform us about the levels of full-length SIRT1 in the circulation (flSIRT1) of clinical cohorts undergoing knee joint distraction (KJD). METHODS We employed an indirect ELISA assay to test NT- and CT-SIRT1 levels and calculated their ratio. Further, to test flSIRT1 we utilized novel antibodies (Ab), which were validated for site specificity and used in a sandwich ELISA method, wherein the CT-reactive served as capture Ab, and its NT-reactive served as primary detection Ab. This method was employed in human serum samples derived from a two-year longitudinal study of KJD patients. Two-year clinical and structural outcomes were correlated with serum levels of flSIRT1 compared to baseline. RESULTS Assessing the cohort, exhibited a significant increase of NT/CT SIRT1 serum levels with increased osteophytes and PIIANP/CTX-II at baseline, while a contradictory increase in NT/CT SIRT1 was associated with less denuded bone, post-KJD. On the other hand, flSIRT1 exhibited an upward trend in serum level, accompanied by reduced denuded bone for 2-year adjusted values. Moreover, 2 year-adjusted flSIRT1 levels displayed a steeper linear regression for cartilage and bone-related structural improvement than those observed for NT/CT SIRT1. CONCLUSIONS Our data support that increased flSIRT1 serum levels are a potential molecular endotype for cartilage-related structural improvement post-KJD, while NT/CT SIRT1 appears to correlate with osteophyte and PIIANP/CTX-II reduction at baseline, to potentially indicate baseline OA severity.
Collapse
Affiliation(s)
- Miya Marco
- Laboratory of Cartilage Biology, Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hadassah-Hebrew University of Jerusalem, P. O. Box 12272, Jerusalem, 9112102, Israel
| | - Mylène Jansen
- Rheumatology & Clinical Immunology, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Goran van der Weiden
- Rheumatology & Clinical Immunology, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eli Reich
- Laboratory of Cartilage Biology, Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hadassah-Hebrew University of Jerusalem, P. O. Box 12272, Jerusalem, 9112102, Israel
| | - Yonathan H Maatuf
- Laboratory of Cartilage Biology, Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hadassah-Hebrew University of Jerusalem, P. O. Box 12272, Jerusalem, 9112102, Israel
| | - Simon C Mastbergen
- Rheumatology & Clinical Immunology, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mona Dvir-Ginzberg
- Laboratory of Cartilage Biology, Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hadassah-Hebrew University of Jerusalem, P. O. Box 12272, Jerusalem, 9112102, Israel.
| |
Collapse
|
7
|
Costa MC, Angelini C, Franzese M, Iside C, Salvatore M, Laezza L, Napolitano F, Ceccarelli M. Identification of therapeutic targets in osteoarthritis by combining heterogeneous transcriptional datasets, drug-induced expression profiles, and known drug-target interactions. J Transl Med 2024; 22:281. [PMID: 38491514 PMCID: PMC10941480 DOI: 10.1186/s12967-024-05006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a multifactorial, hypertrophic, and degenerative condition involving the whole joint and affecting a high percentage of middle-aged people. It is due to a combination of factors, although the pivotal mechanisms underlying the disease are still obscure. Moreover, current treatments are still poorly effective, and patients experience a painful and degenerative disease course. METHODS We used an integrative approach that led us to extract a consensus signature from a meta-analysis of three different OA cohorts. We performed a network-based drug prioritization to detect the most relevant drugs targeting these genes and validated in vitro the most promising candidates. We also proposed a risk score based on a minimal set of genes to predict the OA clinical stage from RNA-Seq data. RESULTS We derived a consensus signature of 44 genes that we validated on an independent dataset. Using network analysis, we identified Resveratrol, Tenoxicam, Benzbromarone, Pirinixic Acid, and Mesalazine as putative drugs of interest for therapeutics in OA for anti-inflammatory properties. We also derived a list of seven gene-targets validated with functional RT-qPCR assays, confirming the in silico predictions. Finally, we identified a predictive subset of genes composed of DNER, TNFSF11, THBS3, LOXL3, TSPAN2, DYSF, ASPN and HTRA1 to compute the patient's risk score. We validated this risk score on an independent dataset with a high AUC (0.875) and compared it with the same approach computed using the entire consensus signature (AUC 0.922). CONCLUSIONS The consensus signature highlights crucial mechanisms for disease progression. Moreover, these genes were associated with several candidate drugs that could represent potential innovative therapeutics. Furthermore, the patient's risk scores can be used in clinical settings.
Collapse
Affiliation(s)
- Maria Claudia Costa
- Biogem s.c.ar.l, Ariano Irpino, Italy
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università di Napoli Federico II, Napoli, Italy
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | | | | | | | - Luigi Laezza
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università di Napoli Federico II, Napoli, Italy
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Francesco Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Michele Ceccarelli
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università di Napoli Federico II, Napoli, Italy.
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
8
|
Oláh T, Cucchiarini M, Madry H. Subchondral bone remodeling patterns in larger animal models of meniscal injuries inducing knee osteoarthritis - a systematic review. Knee Surg Sports Traumatol Arthrosc 2023; 31:5346-5364. [PMID: 37742232 PMCID: PMC10719152 DOI: 10.1007/s00167-023-07579-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Elucidating subchondral bone remodeling in preclinical models of traumatic meniscus injury may address clinically relevant questions about determinants of knee osteoarthritis (OA). METHODS Studies on subchondral bone remodeling in larger animal models applying meniscal injuries as standardizing entity were systematically analyzed. Of the identified 5367 papers reporting total or partial meniscectomy, meniscal transection or destabilization, 0.4% (in guinea pigs, rabbits, dogs, minipigs, sheep) remained eligible. RESULTS Only early or mid-term time points were available. Larger joint sizes allow reporting higher topographical details. The most frequently reported parameters were BV/TV (61%), BMD (41%), osteophytes (41%) and subchondral bone plate thickness (39%). Subchondral bone plate microstructure is not comprehensively, subarticular spongiosa microstructure is well characterized. The subarticular spongiosa is altered shortly before the subchondral bone plate. These early changes involve degradation of subarticular trabecular elements, reduction of their number, loss of bone volume and reduced mineralization. Soon thereafter, the previously normal subchondral bone plate becomes thicker. Its porosity first increases, then decreases. CONCLUSION The specific human topographical pattern of a thinner subchondral bone plate in the region below both menisci is present solely in the larger species (partly in rabbits), but absent in rodents, an important fact to consider when designing animal studies examining subchondral consequences of meniscus damage. Large animal models are capable of providing high topographical detail, suggesting that they may represent suitable study systems reflecting the clinical complexities. For advanced OA, significant gaps of knowledge exist. Future investigations assessing the subchondral bone in a standardized fashion are warranted.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Straße, Building 37, 66421, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Straße, Building 37, 66421, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Kirrberger Straße, Building 37, 66421, Homburg/Saar, Germany.
| |
Collapse
|
9
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
10
|
Saito H, Yayama T, Mori K, Kumagai K, Fujikawa H, Chosei Y, Imai S. Increased Cellular Expression of Interleukin-6 in Patients With Ossification of the Posterior Longitudinal Ligament. Spine (Phila Pa 1976) 2023; 48:E78-E86. [PMID: 36729990 DOI: 10.1097/brs.0000000000004557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 02/03/2023]
Abstract
STUDY DESIGN We performed histologic, immunohistochemical, immunoblot examination and suspension array analyses of cytokine expression in cultured cells derived from human cervical ossification of the posterior longitudinal ligament (OPLL). OBJECTIVE To determine the roles of interleukin-6 (IL-6) during the maturation of osteoblasts and chondrocytes associated with the development of OPLL. SUMMARY OF BACKGROUND DATA Ectopic OPLL affects ~3% of the general population, with a higher incidence in Asian ethnic groups. Alterations in cytokine profiles may influence osteoblast differentiation, but the mechanisms and signaling pathways associated with the ossification process remain unclear. METHODS Samples were collected from 14 patients with OPLL who had undergone spinal surgery and seven with cervical spondylotic myelopathy without OPLL. Tissue sections were used for histologic and immunohistochemical studies, and primary cells from ligamentum samples were used for cytokine array and immunoblotting. A suspension array was used to measure the concentrations of 27 inflammatory cytokines or growth factors. RESULTS Suspension array and immunoblot analyses revealed significantly elevated levels of IL-6 in OPLL patients. Alterations in IL-6 concentrations were found to alter the expression of the genes Sox9 , Runx2 , and SIRT1 . In addition, immunohistochemical analysis revealed that these factors are present in mesenchymal cells within the degenerative portion of the ligament matrix that is adjacent to the ossification front. CONCLUSIONS IL-6 plays a profound role in the osteoblast differentiation process along with the induction of chondrocyte hypertrophy and cell apoptosis in the early stages of ossification in OPLL. These changes in cytokine profiles are essential factors for regulation of the ectopic ossified plaque in OPLL.
Collapse
Affiliation(s)
- Hideki Saito
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Shiga, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang H, Yan Y, Pathak JL, Hong W, Zeng J, Qian D, Hao B, Li H, Gu J, Jaspers RT, Wu G, Shao M, Peng G, Lan H. Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascades. J Cell Mol Med 2023; 27:515-528. [PMID: 36722313 PMCID: PMC9930437 DOI: 10.1111/jcmm.17672] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 02/02/2023] Open
Abstract
Due to the lack of effective treatments, osteoarthritis (OA) remains a challenge for clinicians. Quercetin, a bioflavonoid, has shown potent anti-inflammatory effects. However, its effect on preventing OA progression and the underlying mechanisms are still unclear. In this study, Sprague-Dawley male rats were divided into five groups: control group, OA group (monosodium iodoacetate intra-articular injection), and three quercetin-treated groups. Quercetin-treated groups were treated with intragastric quercetin once a day for 28 days. Gross observation and histopathological analysis showed cartilage degradation and matrix loss in the OA group. High-dose quercetin-group joints showed failure in OA progression. High-dose quercetin inhibited the OA-induced expression of MMP-3, MMP-13, ADAMTS4, and ADAMTS5 and promoted the OA-reduced expression of aggrecan and collagen II. Levels of most inflammatory cytokines and growth factors tested in synovial fluid and serum were upregulated in the OA group and these increases were reversed by high-dose quercetin. Similarly, subchondral trabecular bone was degraded in the OA group and this effect was reversed in the high-dose quercetin group. Our findings indicate that quercetin has a protective effect against OA development and progression possibly via maintaining the inflammatory cascade homeostasis. Therefore, quercetin could be a potential therapeutic agent to prevent OA progression in risk groups.
Collapse
Affiliation(s)
- Haiyan Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Yongyong Yan
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Janak L. Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Jing Zeng
- Liwan Central Hospital of GuangzhouGuangzhouChina
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated HospitalGuangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Binwei Hao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,Department of Pulmonary and Critical Care Medicine, Shanxi Bethune HospitalShanxi Academy of Medical SciencesTaiyuanChina
| | - Haiqing Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jinlan Gu
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Richard T. Jaspers
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam, Amsterdam Movement ScienceAmsterdamThe Netherlands
| | - Ming Shao
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Haifeng Lan
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
12
|
Li Q, Xu P, Zhang C, Gao Y. MiR-362-5p inhibits cartilage repair in osteoarthritis via targeting plexin B1. J Orthop Surg (Hong Kong) 2022; 30:10225536221139887. [PMID: 36523183 DOI: 10.1177/10225536221139887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Chondrogenesis of bone marrow mesenchymal stem cells (BMSCs) exerts great function during the pathogenesis of osteoarthritis (OA). Studies have reported the association of plexin B1 (PLXNB1) with OA pathogenesis. In this study, the upstream mechanism and function of PLXNB1 in this disease were explored. METHODS Flow cytometry was applied to test BMSC characterization. Chondrogenic differentiation of BMSCs was evaluated by Alcian blue staining. The expression of PLXNB1, miR-362-5p, miR-501-5p, miR-1827, miR-500-5p was measured using RT-qPCR analysis. The protein levels of PLXNB1, Aggrecan, and Silent information regulator factor 2-related enzyme 1 (SIRT1) were determined by western blotting. Binding relationship between miR-362-5p and PLXNB1 was confirmed using bioinformatics analysis and luciferase reporter assay. The in vivo model of OA was established in Sprague-Dawley rats which received medial meniscus instability surgery. For histopathological examination, cartilage tissues in the knee joint of rats were stained with hematoxylin and eosin. Micro-CT analysis was employed to observe the changes of morphometric indices including average trabecular separation, average trabecular thickness, and bone volume fraction. RESULTS BMSCs were identified to possess the characteristics of mesenchymal stem cells. PLXNB1 was observed to be highly expressed during chondrogenic differentiation of BMSCs and PLXNB1 overexpression promoted BMSC chondrogenic differentiation. Mechanically, PLXNB1 was targeted by miR-362-5p. In rescue assays, miR-362-5p reversed the effects of PLXNB1 on chondrogenic differentiation of BMSCs. In the in vivo experiments, upregulated PLXNB1 expression alleviated joint injury of OA rats. Additionally, overexpressed miR-362-5p and downregulated PLXNB1 expression levels were detected in OA rats. CONCLUSION MiR-362-5p promotes OA progression by suppressing PLXNB1.
Collapse
Affiliation(s)
- Qian Li
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ping Xu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Chi Zhang
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yang Gao
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
13
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Overview of Anti-Inflammatory and Anti-Nociceptive Effects of Polyphenols to Halt Osteoarthritis: From Preclinical Studies to New Clinical Insights. Int J Mol Sci 2022; 23:ijms232415861. [PMID: 36555503 PMCID: PMC9779856 DOI: 10.3390/ijms232415861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Knee osteoarthritis (OA) is one of the most multifactorial joint disorders in adults. It is characterized by degenerative and inflammatory processes that are responsible for joint destruction, pain and stiffness. Despite therapeutic advances, the search for alternative strategies to target inflammation and pain is still very challenging. In this regard, there is a growing body of evidence for the role of several bioactive dietary molecules (BDMs) in targeting inflammation and pain, with promising clinical results. BDMs may be valuable non-pharmaceutical solutions to treat and prevent the evolution of early OA to more severe phenotypes, overcoming the side effects of anti-inflammatory drugs. Among BDMs, polyphenols (PPs) are widely studied due to their abundance in several plants, together with their benefits in halting inflammation and pain. Despite their biological relevance, there are still many questionable aspects (biosafety, bioavailability, etc.) that hinder their clinical application. This review highlights the mechanisms of action and biological targets modulated by PPs, summarizes the data on their anti-inflammatory and anti-nociceptive effects in different preclinical in vitro and in vivo models of OA and underlines the gaps in the knowledge. Furthermore, this work reports the preliminary promising results of clinical studies on OA patients treated with PPs and discusses new perspectives to accelerate the translation of PPs treatment into the clinics.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-0516366803
| |
Collapse
|
14
|
Yang S, Sun M, Zhang X. Protective Effect of Resveratrol on Knee Osteoarthritis and its Molecular Mechanisms: A Recent Review in Preclinical and Clinical Trials. Front Pharmacol 2022; 13:921003. [PMID: 35959426 PMCID: PMC9357872 DOI: 10.3389/fphar.2022.921003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoarthritis (OA) is one of the progressing chronic joint associated with by many complex factors such as age, obesity, and trauma. Knee osteoarthritis (KOA) is the most common type of OA. KOA is characterized by articular cartilage destruction and degeneration, synovial inflammation, and abnormal subchondral bone changes. To date, no practical clinical approach has been able to modify the pathological progression of KOA. Drug therapy is limited to pain control and may lead to serious side effects when taken for a long time. Therefore, searching for safer and more reliable treatments has become necessary. Interestingly, more and more research has focused on natural products, and monomeric compounds derived from natural products have received much attention as drug candidates for KOA treatment. Resveratrol (RES), a natural phenolic compound, has various pharmacological and biological activities, including anti-cancer, anti-apoptotic, and anti-decay. Recently, studies on the effects of RES on maintaining the normal homeostasis of chondrocytes in KOA have received increasing attention, which seems to be attributed to the multi-targeted effects of RES on chondrocyte function. This review summarizes preclinical trials, clinical trials, and emerging tissue engineering studies of RES for KOA and discusses the specific mechanisms by which RES alleviates KOA. A better understanding of the pharmacological role of RES in KOA could provide clinical implications for intervention in the development of KOA.
Collapse
Affiliation(s)
| | - Mingli Sun
- *Correspondence: Mingli Sun, ; Xinan Zhang,
| | | |
Collapse
|
15
|
Qi H, Zhao Z, Xu L, Zhang Y, Li Y, Xiao L, Li Y, Zhao Z, Fang J. Antisense Oligonucleotide-Based Therapy on miR-181a-5p Alleviates Cartilage Degradation of Temporomandibular Joint Osteoarthritis via Promoting SIRT1. Front Pharmacol 2022; 13:898334. [PMID: 35784690 PMCID: PMC9240346 DOI: 10.3389/fphar.2022.898334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) condylar cartilage degeneration and abnormal subchondral bone pathological remodeling induce pain and joint dysfunction, and cartilage degeneration is considered irreversible. Very few therapeutic approaches are administrated in practice. Nucleotides have demonstrated considerable potential as a next-generation medication, and they have been applied in several models of osteoarthritis. There is a need to establish an effective protocol for TMJOA gene therapy. In the current study unilateral anterior crossbite (UAC) surgery was used to simulate mechanical stress-induced TMJOA in mice. Degeneration of condylar cartilage and destruction of subchondral bone were observed in damaged joints, and miR-181a-5p was elevated in chondrocytes. Intra-articular injection of miR-181a-5p antisense oligonucleotide (ASO) could reduce the cartilage damage and alleviate UAC-induced TMJOA progression, but it did not restore injured subchondral bone. Mechanically, miR-181a-5p evidently targeted the 3’ untranslated region of Sirt1 directly, resulting in inhibition of silent information regulator 1 expression and promoting apoptosis by elevating p53-dependent signaling, indicating that miR181a-5p ASO promoted chondrocyte survival. The present study suggests that ASO-based gene therapy may be an effective TMJOA treatment.
Collapse
Affiliation(s)
- Hexu Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenxing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Lin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Zhang
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Xiao
- Department of Stomatology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Fang,
| |
Collapse
|
16
|
Epigenetic therapy targeting bone marrow mesenchymal stem cells for age-related bone diseases. Stem Cell Res Ther 2022; 13:201. [PMID: 35578312 PMCID: PMC9109405 DOI: 10.1186/s13287-022-02852-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
As global aging accelerates, the prevention and treatment of age-related bone diseases are becoming a critical issue. In the process of senescence, bone marrow mesenchymal stem cells (BMSCs) gradually lose the capability of self-renewal and functional differentiation, resulting in impairment of bone tissue regeneration and disorder of bone tissue homeostasis. Alteration in epigenetic modification is an essential factor of BMSC dysfunction during aging. Its transferability and reversibility provide the possibility to combat BMSC aging by reversing age-related modifications. Emerging evidence demonstrates that epigenetic therapy based on aberrant epigenetic modifications could alleviate the senescence and dysfunction of stem cells. This review summarizes potential therapeutic targets for BMSC aging, introduces some potential approaches to alleviating BMSC aging, and analyzes its prospect in the clinical application of age-related bone diseases.
Collapse
|
17
|
Lin C, Deng Z, Xiong J, Lu W, Chen K, Zheng Y, Zhu W. The Arthroscopic Application of Radiofrequency in Treatment of Articular Cartilage Lesions. Front Bioeng Biotechnol 2022; 9:822286. [PMID: 35127679 PMCID: PMC8811297 DOI: 10.3389/fbioe.2021.822286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage lesion is a common disease to be treated by arthroscopic surgery. It will eventually progress to osteoarthritis without proper management, which can affect patients’ work and daily life seriously. Although mechanical debridement and laser have been used clinically for its treatment, due to their respective drawbacks, radiofrequency has drawn increasing attention from clinicians as a new technique with more advantages. However, the safety and efficacy of radiofrequency have also been questioned. In this article, the scope of application of radiofrequency was reviewed following an introduction of its development history and mechanism, and the methods to ensure the safety and effectiveness of radiofrequency through power and temperature control were summarized.
Collapse
Affiliation(s)
- Chaosheng Lin
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Clinical Medical College, Anhui Medical University, Hefei, China
- Guangdong Key Laboratory of Tissue Engineering, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Clinical Medical College, Anhui Medical University, Hefei, China
- Guangdong Key Laboratory of Tissue Engineering, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Zhenhan Deng, ; Weimin Zhu,
| | - Jianyi Xiong
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Clinical Medical College, Anhui Medical University, Hefei, China
- Guangdong Key Laboratory of Tissue Engineering, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Lu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Guangdong Key Laboratory of Tissue Engineering, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Kang Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Guangdong Key Laboratory of Tissue Engineering, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yizi Zheng
- Guangdong Key Laboratory of Tissue Engineering, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Clinical Medical College, Anhui Medical University, Hefei, China
- Guangdong Key Laboratory of Tissue Engineering, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Zhenhan Deng, ; Weimin Zhu,
| |
Collapse
|