1
|
Chang CH, Ho CS, Li F, Chen CY, Yeh HC, Ho CA. Acute effects of muscle mechanical properties after 2000-m rowing in young male rowers. PeerJ 2024; 12:e16737. [PMID: 38188161 PMCID: PMC10771759 DOI: 10.7717/peerj.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Background The mechanical properties of muscles, such as changes in muscle tone and stiffness, are related to sports performance and injuries. Rowers are at increased risk of muscle fatigue and injury during high-repetition and heavy-load cyclic muscle actions. In view of this, the aim of the present study was to investigate the acute effect on muscle tone and stiffness, as well as bilateral muscle asymmetry, in high school rowers after a 2000-meter rowing ergometer test. Methods Twelve young male rowers (age = 17.1 ± 0.9 years, body weight = 73.5 ± 9.7 kg) were included in the study. The data of muscle tone (frequency) and stiffness of the posterior deltoids (PD), latissimus dorsi (LD), and rectus femoris (RF) (dominant and non-dominant side) before and after a 2000-m rowing ergometer test were collected using a handheld MyotonPRO device. Results After the rowing ergometer test, the muscle tone of dominant side PD, LD, and RF were significantly increased (p < 0.05). On the other hand, the muscle stiffness of the non-dominant side LD and RF, as well as the dominant side PD, LD, and RF were significantly increased after the rowing ergometer test (p < 0.05). The muscle tone and stiffness results showed that the dominant side PD, LD, and RF were all significantly higher than the non-dominant side after the rowing ergometer test (p < 0.05), where bilateral PD and RF exhibits moderate asymmetry (5% < symmetry index < 10%). Conclusions After a high-intensity and high-load 2000-m rowing ergometer test, PD, LD, and RF showed increases in muscle tone and stiffness, as well as changes in the symmetry of bilateral muscle mechanical properties.
Collapse
Affiliation(s)
- Chun-Hao Chang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan
| | - Fang Li
- School of Physical Education, Central China Normal University, Wuhan City, Hubei Province, China
| | - Chao-Yuan Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan
- Sport Office, National Taipei University of Business, Taipei City, Taiwan
| | - Hung-Chih Yeh
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan
| | - Chia-An Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan
| |
Collapse
|
2
|
Nosikova I, Riabova A, Kitov V, Tomilovskaya E. Corticospinal excitability after 5-day Dry Immersion in women. Front Neural Circuits 2023; 17:1163346. [PMID: 37811482 PMCID: PMC10556517 DOI: 10.3389/fncir.2023.1163346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
In light of the development of manned astronautics and the increasing participation of women in space flights, the question of female body adaptation to microgravity conditions becomes relevant. Currently, one of the important directions in this issue is to study the effects of support withdrawal as a factor of weightlessness on the human sensorimotor system. Dry Immersion is one of the well-known ground-based models, which adequately reproduces the main physiological effects of space flight. The aim of this study was to evaluate the changes in motor evoked potentials of the lower leg gravity-dependent muscles in women after a 5-day Dry Immersion. We analyzed evoked responses to transcranial and trans-spinal magnetic stimulation. In this method, areas of interest (the motor cortex and lumbosacral thickening of the spinal cord) are stimulated with an electromagnetic stimulus. The experiment was conducted with the participation of 16 healthy female volunteers with a natural menstrual cycle. The thresholds, amplitudes, and latencies of motor potentials evoked by magnetic stimulation were assessed. We showed that 5-day exposure to support withdrawal leads to a decrease in motor-evoked potential thresholds and central motor conduction time, although changes in motor response amplitudes were ambiguous. The data obtained correspond to the results of previous research on Dry Immersion effects on the sensorimotor system in men.
Collapse
Affiliation(s)
- Inna Nosikova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Alexandra Riabova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Kitov
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Elena Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Saveko A, Bekreneva M, Ponomarev I, Zelenskaya I, Riabova A, Shigueva T, Kitov V, Abu Sheli N, Nosikova I, Rukavishnikov I, Sayenko D, Tomilovskaya E. Impact of different ground-based microgravity models on human sensorimotor system. Front Physiol 2023; 14:1085545. [PMID: 36875039 PMCID: PMC9974674 DOI: 10.3389/fphys.2023.1085545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
This review includes current and updated information about various ground-based microgravity models and their impact on the human sensorimotor system. All known models of microgravity are imperfect in a simulation of the physiological effects of microgravity but have their advantages and disadvantages. This review points out that understanding the role of gravity in motion control requires consideration of data from different environments and in various contexts. The compiled information can be helpful to researchers to effectively plan experiments using ground-based models of the effects of space flight, depending on the problem posed.
Collapse
Affiliation(s)
- Alina Saveko
- Russian Federation State Scientific Center—Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
García-Bernal MI, González-García P, Casuso-Holgado MJ, Cortés-Vega MD, Heredia-Rizo AM. Measuring Mechanical Properties of Spastic Muscles After Stroke. Does Muscle Position During Assessment Really Matter? Arch Phys Med Rehabil 2022; 103:2368-2374. [PMID: 35724753 DOI: 10.1016/j.apmr.2022.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the influence of muscle position (relaxed vs stretched) on muscle mechanical properties and the ability of myotonometry to detect differences between sides, groups, and sites of testing in patients with stroke. We also analyzed the association between myotonometry and clinical measures of spasticity. DESIGN Cross-sectional study. SETTING Outpatient rehabilitation units including private and public centers. PARTICIPANTS Seventy-one participants (20 subacute stroke, 20 chronic stroke, 31 controls) were recruited (N=71). INTERVENTION Muscle mechanical properties were measured bilaterally with a MyotonPRO at muscle belly and musculotendinous sites during 2 protocols (muscle relaxed or in maximal bearable stretched position). MAIN OUTCOME MEASURES Muscle tone and stiffness of the biceps brachii and gastrocnemius. Poststroke spasticity was evaluated with the Modified Tardieu Scale (MTS). A mixed-model analysis of variance was used to detect differences in the outcome measures. RESULTS The analysis of variance showed a significant effect of muscle position on muscle mechanical properties (higher tone and stiffness with the muscle assessed in stretched position). Measurements with the stretched muscle could help discriminate between spastic and nonspastic sides, but only at the biceps brachii. Overall, there was a significant increase in tone and stiffness in the chronic stroke group and in myotendinous sites compared with muscle belly sites (all, P<.05). No correlations were found between myotonometry and the MTS. CONCLUSIONS Myotonometry assessment of mechanical properties with the muscle stretched improves the ability of myotonometry to discriminate between sides in patients after stroke and between people with and without stroke.
Collapse
Affiliation(s)
- María-Isabel García-Bernal
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain
| | - Paula González-García
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain.
| | - María Jesús Casuso-Holgado
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain; UMSS Research Group, Universidad de Sevilla, Sevilla, Spain
| | - María Dolores Cortés-Vega
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain
| | - Alberto Marcos Heredia-Rizo
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain; UMSS Research Group, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
5
|
Plehuna A, Green DA, Amirova LE, Tomilovskaya ES, Rukavishnikov IV, Kozlovskaya IB. Dry immersion induced acute low back pain and its relationship with trunk myofascial viscoelastic changes. Front Physiol 2022; 13:1039924. [PMID: 36311233 PMCID: PMC9606241 DOI: 10.3389/fphys.2022.1039924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 08/12/2023] Open
Abstract
Microgravity induces spinal elongation and Low Back Pain (LBP) but the pathophysiology is unknown. Changes in paraspinal muscle viscoelastic properties may play a role. Dry Immersion (DI) is a ground-based microgravity analogue that induces changes in m. erector spinae superficial myofascial tissue tone within 2 h. This study sought to determine whether bilateral m. erector spinae tone, creep, and stiffness persist beyond 2 h; and if such changes correlate with DI-induced spinal elongation and/or LBP. Ten healthy males lay in the DI bath at the Institute of Biomedical Problems (Moscow, Russia) for 6 h. Bilateral lumbar (L1, L4) and thoracic (T11, T9) trunk myofascial tone, stiffness and creep (MyotonPRO), and subjective LBP (0-10 NRS) were recorded before DI, after 1h, 6 h of DI, and 30min post. The non-standing spinal length was evaluated on the bath lifting platform using a bespoke stadiometer before and following DI. DI significantly modulated m. erector spinae viscoelastic properties at L4, L1, T11, and T9 with no effect of laterality. Bilateral tissue tone was significantly reduced after 1 and 6 h DI at L4, L1, T11, and T9 to a similar extent. Stiffness was also reduced by DI at 1 h but partially recovered at 6 h for L4, L1, and T11. Creep was increased by DI at 1 h, with partial recovery at 6 h, although only T11 was significant. All properties returned to baseline 30 min following DI. Significant spinal elongation (1.17 ± 0.20 cm) with mild (at 1 h) to moderate (at 6 h) LBP was induced, mainly in the upper lumbar and lower thoracic regions. Spinal length increases positively correlated (Rho = 0.847, p = 0.024) with middle thoracic (T9) tone reduction, but with no other stiffness or creep changes. Spinal length positively correlated (Rho = 0.557, p = 0.039) with Max LBP; LBP failed to correlate with any m. erector spinae measured parameters. The DI-induced bilateral m. erector spinae tone, creep, and stiffness changes persist beyond 2 h. Evidence of spinal elongation and LBP allows suggesting that the trunk myofascial tissue changes could play a role in LBP pathogenesis observed in real and simulated microgravity. Further study is warranted with longer duration DI, assessment of IVD geometry, and vertebral column stability.
Collapse
Affiliation(s)
- Anastasija Plehuna
- King’s College London, Centre of Human & Applied Physiological Sciences, London, United Kingdom
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - David Andrew Green
- King’s College London, Centre of Human & Applied Physiological Sciences, London, United Kingdom
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle Laboratories GmbH, Cologne, Germany
| | - Liubov E. Amirova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena S. Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Rukavishnikov
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inessa B. Kozlovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Robin A, Navasiolava N, Gauquelin-Koch G, Gharib C, Custaud MA, Treffel L. Spinal changes after 5-day dry immersion as shown by magnetic resonance imaging (DI-5-CUFFS). Am J Physiol Regul Integr Comp Physiol 2022; 323:R310-R318. [PMID: 35700204 DOI: 10.1152/ajpregu.00055.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astronauts frequently report microgravity-induced back pain, which is generally more pronounced in the beginning of a spaceflight. The dry immersion (DI) model reproduces the early effects of microgravity in terms of global support unloading and fluidshift, both of which are involved in back pain pathogenesis. Here, we assessed spinal changes induced by exposure to 5 days of strict DI in 18 healthy men (25-43 years old) with (n = 9) or without (n = 9) thigh cuffs countermeasure. Intervertebral disc (IVD) height, spinal cord position, and apparent diffusion coefficient (ADC; reflecting global water motion) were measured using magnetic resonance imaging before and after DI. After DI, IVD height increased in thoracic (+3.3 ± 0.8 mm; C7-T12) and lumbar (+4.5 ± 0.4 mm; T12-L5) regions but not in the cervical region (C2-C7) of the spine. An increase in ADC after DI was observed at the L1 (~6% increase, from 3.2 to 3.4 × 10-3 mm2/s; p < 0.001) and L2 (~3% increase, from 3.4 to 3.5 × 10-3 mm2/s; p = 0.005) levels. There was no effect of thigh cuffs on spinal parameters. This change in IVD after DI follows the same "gradient" pattern of height increase from the cervical to the lumbar region as observed after bedrest and spaceflight. The increase in ADC at L1 level positively correlated with reported back pain. These findings emphasize the utility of the DI model for studying early spinal changes observed in microgravity.
Collapse
Affiliation(s)
- Adrien Robin
- Univ Angers, CHU Angers, CRC, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | - Nastassia Navasiolava
- Univ Angers, CHU Angers, CRC, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | | | - Claude Gharib
- PGNM (Pathologie et Génétique du Neurone et du Muscle) Université Lyon1, Lyon, France
| | - Marc-Antoine Custaud
- Univ Angers, CHU Angers, CRC, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | - Loïc Treffel
- PGNM (Pathologie et Génétique du Neurone et du Muscle) Université Lyon1, Lyon, France.,Institut Toulousain d'Ostéopathie, IRF'O, Labège-Toulouse, France
| |
Collapse
|
7
|
Bazanova OM, Kovaleva AV. Stabilometric Biofeedback Training in Cognitive and Affective Function Improvement. Contribution of the Russian Scientific School. Part II. HUMAN PHYSIOLOGY 2022; 48:271-284. [PMID: 35677212 PMCID: PMC9163904 DOI: 10.1134/s0362119722030021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
This review is the second part of the critical analysis of recent papers of Russian and other authors devoted to the study of the stabilometric parameters in postural control biofeedback training and rehabilitation, associated with psychological functions. The review presents the studies of postural control features in chronic pain syndrome, chronic fatigue syndrome, Parkinson's disease, multiple sclerosis, and depression. The leading role of Russian researchers in the development and application of stabilometric biofeedback in the training of optimal functioning, rehabilitation, and correction of neurological disorders is noted. The paradigm of stabilometric biofeedback training of the cognitive and affective functions is offered.
Collapse
Affiliation(s)
- O. M. Bazanova
- Scientific Research Institute of Neuroscience & Medicine, Novosibirsk, Russia
| | - A. V. Kovaleva
- Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
8
|
Bazanova OM, Kovaleva AV. Psychophysiological Indicators of Postural Control. Contribution of the Russian Scientific School. Part I. HUMAN PHYSIOLOGY 2022; 48:207-228. [PMID: 35462944 PMCID: PMC9017964 DOI: 10.1134/s0362119722020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/20/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022]
Abstract
This article aimed to systematically review the published results of studies of psychophysiological mechanisms of posture maintenance and identify the key factors that influence the effectiveness of postural control. The recommendations of "Preferred Reporting Elements for Systematic Reviews and Meta-Analyzes" (PRISMA) were followed for the review. The results were classified, taking into account the target psychophysiological mechanisms and factors affecting postural control. The article presents the theoretical and empirical results of the Russian scientific school of research on the role of support afferentation in the sensorimotor mechanisms of cognitive and postural functions. Due to the limited number of randomized studies found, it was impossible to make meta-analytic comparisons, so the literature analysis was carried out only qualitatively. Meanwhile, our systematic review provides promising information about possible relationships between stabilometric and psychological indicators of postural control, which have theoretical significance and application in the correction and training of posture control. However, more thorough research is needed to overcome the methodological shortcomings that we have encountered in our qualitative analysis.
Collapse
Affiliation(s)
- O. M. Bazanova
- State Research Institute of Neuroscience & Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - A. V. Kovaleva
- Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
9
|
Chang TT, Zhu YC, Li Z, Li F, Li YP, Guo JY, Wang XQ, Zhang ZJ. Modulation in the Stiffness of Specific Muscles of the Quadriceps in Patients With Knee Osteoarthritis and Their Relationship With Functional Ability. Front Bioeng Biotechnol 2022; 9:781672. [PMID: 35223811 PMCID: PMC8870124 DOI: 10.3389/fbioe.2021.781672] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Deficits in the flexibility of the quadriceps are one of the risk factors for developing knee joint disorders. No studies have investigated the changes in the stiffness of the quadriceps muscle among patients with knee osteoarthritis (OA). Therefore, the purpose of this study was to investigate changes in the stiffness of specific-muscle of the quadriceps in patients with knee OA and their relationship with functional ability. Twenty-five patients with knee OA and 25 healthy, asymptomatic subjects were recruited in this study. The stiffness of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) in all participants was evaluated using MyotonPRO at 60° and 90° flexion of the knee joint. The results of this study showed a greater VL stiffness in patients with knee OA than in healthy subjects at both 60° and 90° of knee flexion (p < 0.05). Significant differences in VL, VM and RF stiffness were obtained at different knee joint angles in individuals with and without knee OA (p < 0.05). In addition, there was a positive correlation between VL stiffness and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores in patients with Knee OA (60° of knee flexion: r = 0.508, p = 0.010; 90° of knee flexion: r = 0.456, p = 0.022). These results indicate that there is an increase in VL stiffness in patients with knee OA compared with healthy, asymptomatic subjects, and the quadriceps stiffness was increased with knee flexion in both healthy subjects and patients with knee OA. VL stiffness is associated with WOMAC scores in patients with knee OA.
Collapse
Affiliation(s)
- Tian-Tian Chang
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Yuan-Chun Zhu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Zhe Li
- The First Clinical Medical School, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Feng Li
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Ya-Peng Li
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Jia-Yi Guo
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Zhi-Jie Zhang
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
- *Correspondence: Zhi-Jie Zhang,
| |
Collapse
|
10
|
Weber B, Proske U. Limb position sense and sensorimotor performance under conditions of weightlessness. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:63-69. [PMID: 35065762 DOI: 10.1016/j.lssr.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
This is a review of the current state of knowledge of the effects of weightlessness on human proprioception. Two aspects have been highlighted: the sense of limb position and performance in sensorimotor tasks. For the sense of position, an important consideration is that there probably exists more than one sense: one measured in a blindfolded, two-limb position matching task, the other, by pointing to the perceived position of a hidden limb. There is evidence that these two senses are supported by distinct central projection pathways. When assessing the effects of weightlessness this must be considered. Whether there is a role for vestibular influences on position sense during changes in gravitational forces is an issue for future experiments. A consideration that has proved helpful for the study of sensorimotor tasks under conditions of weightlessness is to examine the performance of subjects who have lost their proprioceptive senses, either congenitally, or later in life, as a result of disease. In weightlessness, normal subjects appear to have particular difficulties with feedback-controlled tasks. A major factor is the influence of vision on performance. In addition, the stress of working in a weightless environment leads to additional cognitive load, making the execution of even simple everyday tasks difficult.
Collapse
Affiliation(s)
- Bernhard Weber
- Institute of Robotics and Mechatronics, German Aerospace Center, Oberpfaffenhofen, 82234 Wessling, Germany.
| | - Uwe Proske
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|