1
|
Jing M, Han G, Wan J, Zong W, Liu R. Differential eco-toxicological responses toward Eisenia fetida exposed to soil contaminated with naphthalene and typical metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44800-44814. [PMID: 38954347 DOI: 10.1007/s11356-024-34149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Naphthalene (NAP) was frequently detected in polycyclic aromatic hydrocarbons (PAHs)-contaminated soil, and its residues may pose an eco-toxicological threat to soil organisms. The toxic effects of NAP were closely tied to phenolic and quinone metabolites in biological metabolism. However, the present knowledge concerning the eco-toxicological impacts of NAP metabolites at the animal level is scanty. Here, we assessed the differences in the eco-toxicological responses of Eisenia fetida (E. fetida) in NAP, 1-naphthol (1-NAO) or 1,4-naphthoquinone (1,4-NQ) contaminated soils. NAP, 1-NAO, and 1,4-NQ exposure triggered the onset of oxidative stress as evidenced by the destruction of the antioxidant enzyme system. The lipid peroxidation and DNA oxidative damage levels induced by 1-NAO and 1,4-NQ were higher than those of NAP. The elevation of DNA damage varied considerably depending on differences in oxidative stress and the direct mode of action of NAP or its metabolites with DNA. All three toxicants induced different degrees of physiological damage to the body wall, but only 1, 4-NQ caused the shedding of intestinal epithelial cells. The integrated biomarker response for different exposure times illustrated that the comprehensive toxicity at the animal level was 1,4-NQ > 1-NAO > NAP, and the time-dependent trends of oxidative stress responses induced by the three toxicants were similar. At the initial stage, the antioxidant system of E. fetida responded positively to the provocation, but the ability of E. fetida to resist stimulation decreased with the prolongation of time resulting in provocation oxidative damage. This study would provide new insights into the toxicological effects and biohazard of PAHs on soil animals.
Collapse
Affiliation(s)
- Mingyang Jing
- Shandong Urban Construction Vocational College, 4657# Tourism Road, Jinan, Shandong, 250100, P.R. China
| | - Guangye Han
- Shandong Academy of Environmental Sciences Co., Ltd, Licheng, 12777# Zhenyuan Road, Jinan, Shandong, 250100, P.R. China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, P.R. China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, Shandong, China
| | - Rutao Liu
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, P.R. China.
| |
Collapse
|
2
|
Cao J, Guo M, Qiu W, Mei J, Xie J. Effect of tea polyphenol-trehalose complex coating solutions on physiological stress and flesh quality of marine-cultured Turbot Scophthalmus maximus during waterless transport. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:151-163. [PMID: 38467576 DOI: 10.1002/aah.10213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 03/13/2024]
Abstract
OBJECTIVE The waterless transport of live fish has changed the present situation of live-fish transport. However, the waterless transport environment may cause stress in fish. This research evaluated the effect of tea polyphenol-trehalose (TPT) coating solutions on Turbot Scophthalmus maximus during waterless transport. METHODS After cold acclimation, Turbot were coated and subsequently transported in a waterless environment for 18 h. Physiological and biochemical parameters were measured, including lysozyme (LZM) and immunoglobulin M (IgM) activities, serum creatinine (Cr) and uric acid (UA) concentrations, and nutritional flavor. RESULT The results showed that the nonspecific immunity of Turbot was inhibited during the waterless transport; the LZM activity first increased and then decreased, and the serum Cr and UA concentrations significantly increased. In addition, the waterless transport promoted the breakdown of Turbot flesh proteins, leading to changes in nucleotides and free amino acids (FAAs). After waterless transport, the LZM and IgM activities in the TPT-treated Turbot were higher than those in the control group (CK), and the changes in FAA content and nucleotides were smaller than those observed in the CK group. CONCLUSION This study shows that the use of TPT coating solution can reduce the impact of waterless transportation stress on the immune and metabolic functions of Turbot and can maintain the meat quality and flavor of Turbot.
Collapse
Affiliation(s)
- Jie Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meijie Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
3
|
He Z, Cai Y, Xiao Y, Cao S, Zhong G, Li X, Li Y, Luo J, Tang J, Qu F, Liu Z, Liu S. Intervention of Dietary Protein Levels on Muscle Quality, Antioxidation, and Autophagy in the Muscles of Triploid Crucian Carp ( Carassius carassius Triploid). Int J Mol Sci 2023; 24:12043. [PMID: 37569417 PMCID: PMC10418328 DOI: 10.3390/ijms241512043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study is to investigate the effect of dietary protein levels on flesh quality, oxidative stress, and autophagy status in the muscles of triploid crucian carp (Carassius carassius triploid), and the related molecular mechanisms. Six experimental diets with different protein levels (26%, 29%, 32%, 35%, 38%, 41%) were formulated. A total of 540 fish with an initial weight of 11.79 ± 0.09 g were randomly assigned to 18 cages and six treatments with three replicates of 30 fish each for 8 weeks feeding. It could be found that the whole-body ash content significantly increased in high protein level groups (p < 0.05). The 29% dietary protein level group exhibited the highest muscle moisture, although there was an inconspicuous decrease in the chewiness of the muscles when compared with the other groups. The dietary protein level influenced the content of free amino acids and nucleotides, especially the content of flavor amino acids, which exhibited an increasing tendency along with the increasing protein level, such as alanine and glutamic acid, while the flavor nucleotides showed different fluctuation trends. Moreover, the genes related to muscle development were shown to be influenced by the dietary protein level, especially the expression of MRF4, which was up-regulated with the increasing dietary protein levels. The 29% dietary protein level promoted the majority of analyzed muscle genes expression to the highest level when compared to other dietary levels, except the Myostain, whose expression reached its highest at 38% dietary protein levels. Furthermore, the effect of dietary protein levels on antioxidant signaling pathway genes were also examined. High protein levels would boost the expression of GSTα; GPX1 and GPX4α mRNA expression showed the highest level at the 32% dietary protein group. The increasing dietary protein level decreased both mRNA and protein expressions of Nrf2 by up-regulating Keap1. Autophagy-related gene expression levels reached the peak at 32% dietary protein level, as evidenced by a similar change in protein expression of FoxO1. In summary, muscle nutritional composition, antioxidative pathways, and autophagy levels were affected by the dietary protein levels. A total of 29-32% dietary protein level would be the appropriate level range to improve muscle quality and promote the antioxidant and autophagy capacity of triploid crucian carp muscles.
Collapse
Affiliation(s)
- Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Yuyang Cai
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Xiao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Gaode Zhong
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Xinting Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Yanfang Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Junhan Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Suchun Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Investigation on Immune-Related Protein (Heat Shock Proteins and Metallothionein) Gene Expression Changes and Liver Histopathology in Cadmium-Stressed Fish. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2075791. [PMID: 35968242 PMCID: PMC9365607 DOI: 10.1155/2022/2075791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Heat shock proteins (HSP) are highly conserved in their structure and released in case of stress. Increased metallothionein (MT) synthesis is associated with increased capacity for binding heavy metals. Healthy juveniles of grass carp were exposed to sublethal dose (1.495 mg L−1) of cadmium for 28 days. Simultaneously, a control group was also run to compare difference of total RNA expression levels in cadmium-treated and control groups. The cadmium levels in the tissues of treated fish recorded were 1.78 ± 0.10 mg L−1, 1.60 ± 0.04 mg L−1, and 2.00 ± 0.05 mg L−1, respectively. Several histological alterations including edema, hemorrhage, dilated sinusoids, hypertrophy, hyperplasia, congestion of central vein, and nuclear alterations were observed in cadmium-exposed fish. Stress gene (metallothionein and heat shock proteins) mRNA transcription levels were studied by mRNA extraction and cDNA preparation by using PCR. The expression level of heat shock protein gene was higher as compared to metallothionein and beta-2-microglobulin gene after cadmium exposure. This study reports various stress-related immune-responsive changes of immune proteins, heat shock proteins, metallothionein, and histopathological changes in fish due to cadmium toxicity that make the fish immunocompromised which may be considered as the biomarkers of cadmium toxicity in other experimental species.
Collapse
|