1
|
Ma Y, Hu X, Shen S, Pan D. Geniposide ameliorates brain injury in mice with intracerebral hemorrhage by inhibiting NF-κB signaling. Neurol Res 2024; 46:346-355. [PMID: 38402902 DOI: 10.1080/01616412.2024.2321014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Neuroinflammation and oxidative stress are critical players in intracerebral hemorrhage (ICH). Geniposide is an active component of Gardenia that has anti-inflammatory effects. This study focused on the roles and mechanisms of geniposide in ICH. METHODS ICH was established by injecting collagenase IV into C57BL/6 mice. To determine the functions of geniposide and NF-κB inhibition in ICH model mice, geniposide (1, 25, or 50 mg/kg) or PDTC (a NF-κB inhibitor) was administered. Neurological functions were assessed with the modified neurological severity score (mNSS) test. Hematoxylin and eosin staining were performed to identify pathological changes. IL-1β and TNF-α levels were estimated with ELISA kits. NF-κB p65 localization was determined by immunofluorescence staining. Oxidative stress was analyzed by measuring ROS levels. RESULTS Geniposide alleviated cerebral edema and neurological deficits. Geniposide inhibited neuroinflammation and oxidative stress after ICH, and the inhibitory effects were enhanced by NF-κB inhibition. Additionally, geniposide inhibited NF-κB signaling. CONCLUSION Geniposide alleviates brain injury by suppressing inflammation and oxidative stress damage in experimental ICH models by inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Yinghui Ma
- Department of Neurosurgery, Huang Shi Central Hospital, HuangShi, China
| | - Xiao Hu
- Department of Neurosurgery, Huang Shi Central Hospital, HuangShi, China
| | - Songbo Shen
- Department of Neurosurgery, Huang Shi Central Hospital, HuangShi, China
| | - Dongmei Pan
- Department of Geriatrics, Huang Shi Central Hospital, HuangShi, China
| |
Collapse
|
2
|
Stanciu CN, Ahmed S, Sarfraz Z, Nimavat N, Healey CJ, Grundmann O, Ballard JR, Henningfield J. Prevalence, Characteristics, and Reasons for Kratom Use among Psychiatrically Ill Inpatients Who Use Substances. J Dual Diagn 2024; 20:87-97. [PMID: 38153407 DOI: 10.1080/15504263.2023.2289456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Despite kratom impacting neurobiological systems involved in psychiatric disorders, little is known about the prevalence of use among patients with severe psychopathologies. Here, we investigated the prevalence of kratom use, motives for use, and the clinical associations among inpatients with severe psychiatric disorders. METHODS A total of 578 patients, aged 18 to 65, were evaluated by New Hampshire Hospital's Addiction Services from January 1, 2020, to February 28, 2022. The study collected demographic information and used chi-square tests, multivariable logistic regression, and subgroup analyses with 95% confidence intervals to examine trends among kratom users. A receiver operating characteristic curve analysis was also conducted. All statistical tests were performed using IBM SPSS Version 28.0.1. RESULTS Of the patients assessed, 2.2% (n = 13) reported using kratom. The reasons for kratom use were managing withdrawal symptoms (15.4%), maintaining sobriety and reducing cravings for opioids (53.8%), improving focus and concentration (30.8%), alleviating low moods (38.5%), and managing pain (15.4%). Compared to non-kratom users, the only factor with a fair to good association with kratom use is postsecondary education (Area Under Curve, AUC = 0.77). CONCLUSIONS Prevalence of kratom use among patients with serious mental illness at our site aligns with that reported in the general population. Users often cite self-management of cravings and sobriety from opioids, as well as treatment of low mood states, as motivations for consumption. While observations suggest a possible association between kratom use and individuals with post-secondary education, multiple substance use, and experience of substance-induced psychosis or mood disorders, it is essential to interpret these links cautiously until further rigorous studies are carried out to substantiate these findings.
Collapse
Affiliation(s)
- Cornel N Stanciu
- Director of Addiction Services, New Hampshire Hospital, Concord, New Hampshire, USA
| | - Saeed Ahmed
- Department of Psychiatry, Rutland Regional Medical Center, Rutland, Vermont, USA
| | - Zouina Sarfraz
- Department of Research and Publications, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Nirav Nimavat
- Community Medicine Department, B.K. Shah Medical Institute & Research Centre, Vadodara, India
| | | | - Oliver Grundmann
- Entrepreneurial Programs in Medicinal Chemistry, University of Florida, Gainesville, Florida, USA
| | - Jonathan R Ballard
- Chief Medical Officer, New Hampshire Department of Health and Human Services, Concord, New Hampshire, USA
| | - Jack Henningfield
- Pinney Associates, Inc., Bethesda, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
SHAKYA S, DANSHIITSOODOL N, NODA M, SUGIYAMA M. Transcriptional profiling of geniposide bioconversion into genipin during gardenia fructus extract fermentation by Lactobacillus (Lactiplantibacillus) plantarum SN13T. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:120-127. [PMID: 38562546 PMCID: PMC10981940 DOI: 10.12938/bmfh.2023-066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/26/2023] [Indexed: 04/04/2024]
Abstract
Lactiplantibacillus plantarum SN13T is a probiotic plant-derived lactic acid bacterium that can grow in various medicinal plant extracts. In this study, we fermented an aqueous extract of gardenia fructus, the fruit of a medicinal plant, with SN13T, such that the bioactivity of the extract was potentiated after fermentation to suppress the release of inflammatory mediators, such as nitric oxide (NO), reactive oxygen species (ROS), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), as well as downregulate inflammatory genes in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. This increased antioxidant and anti-inflammatory activity was mediated through bioconversion of the iridoid glycoside geniposide to its aglycone genipin via the supposed hydrolytic action of β-glucosidases harbored by SN13T. In the complete genome of SN13T, ten putative genes encoding β-glucosidases of glycosyl hydrolase (GH) family 1 organized among eight gene operons were identified. Transcriptional profiling revealed that two 6-phospho-β-glucosidase genes, pbg9 and SN13T_1925, located adjacently in the gene operon SN13T_1923, were transcribed significantly more than the remaining genes during fermentation of the gardenia extract. This suggests the role of these β-glucosidases in bioconversion of geniposide to genipin and the subsequent enhanced bioactivity of the gardenia fructus extract after fermentation with SN13T.
Collapse
Affiliation(s)
- Shrijana SHAKYA
- Department of Probiotic Science for Preventive Medicine,
Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima 734-8551, Japan
| | - Narandalai DANSHIITSOODOL
- Department of Probiotic Science for Preventive Medicine,
Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima 734-8551, Japan
| | - Masafumi NODA
- Department of Probiotic Science for Preventive Medicine,
Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima 734-8551, Japan
| | - Masanori SUGIYAMA
- Department of Probiotic Science for Preventive Medicine,
Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
4
|
Sallom H, Abdi A, Halboup AM, Başgut B. Evaluation of pharmaceutical care services in the Middle East Countries: a review of studies of 2013-2020. BMC Public Health 2023; 23:1364. [PMID: 37461105 PMCID: PMC10351150 DOI: 10.1186/s12889-023-16199-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Pharmaceutical care services (PCs) have evolved significantly over the last few decades, with a greater focus on patient's safety and proven effectiveness in a wide range of contexts. Many of the evidence supporting this technique comes from the United States, the evaluation and adoption of (PCs) which differ greatly across the globe. OBJECTIVE The goal of this study was to identify and assess the efficacy of pharmaceutical care services in various pharmaceutical aspects throughout seventeen Middle Eastern nations. METHOD The Arkesy and O'Malley technique was used to conduct a scoping review. It was conducted using PubMed/Medline, Scopus, Cochrane Library, Springer Link, Clinical Trials, and Web of Science etc. The Van Tulder Scale was utilized in randomized trials research, whereas the dawn and black checklists were used in non-randomized trials research. A descriptive and numerical analysis of selected research was done. The scope of eligible PCs, pharmaceutical implementers, study outcomes, and quality were all identified by a thematic review of research. RESULTS There were about 431,753 citations found in this study, and 129 publications were found to be eligible for inclusion after analysing more than 271 full-text papers. The study design was varied, with 43 (33.3%) RCTs and 86 (66.7%) n-RCTs. Thirty-three (25.6%) of the studies were published in 2020. Jordan, Saudi Arabia, and Turkey were home to the majority of the studies (25.6%, 16.3%, and 11.6%) respectively. Thirty-seven studies (19.7%) were concerned with resolving drug related problems (DRPs), whereas 27 (14.4%) were concerned with increasing quality of life (QOL) and 23 (12.2%) with improving drug adherence. Additionally, the research revealed that the average ratings of the activities provided to patients improved every year. CONCLUSION Studies in the Middle East continue to provide evidence supporting the positive impact of pharmaceutical care services on both hard and soft outcomes measured in most studies. Yet there was rare focus on the value of the implemented services. Thus, rigorous evaluation of the economic impact of implemented pharmaceutical care services in the Middle East and assessment of their sustainability is must.
Collapse
Affiliation(s)
- Hebah Sallom
- Department of Clinical Pharmacy, Faculty of Pharmacy, Near East University, Nicosia, Cyprus, Turkey
- Department of Clinical Pharmacy and Practice, Faculty of Pharmacy, University of Science and Technology, Sana’a, Yemen
| | - Abdikarim Abdi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Near East University, Nicosia, Cyprus, Turkey
- Department of Clinical Pharmacy, Faculty of Pharmacy, Yeditepe University, İstanbul, Turkey
| | - Abdulsalam M Halboup
- Department of Clinical Pharmacy and Practice, Faculty of Pharmacy, University of Science and Technology, Sana’a, Yemen
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Bilgen Başgut
- Department of Pharmacology, Faculty of Pharmacy, Başkent University, Ankara, Turkey
| |
Collapse
|
5
|
Gao T, Wang X, Li Y, Ren F. The Role of Probiotics in Skin Health and Related Gut-Skin Axis: A Review. Nutrients 2023; 15:3123. [PMID: 37513540 PMCID: PMC10385652 DOI: 10.3390/nu15143123] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Aging skin, wrinkles, pigmentation, and dryness are problems that plague people, and researchers are working to solve them. Recent studies have shown that intestinal microbiota homeostasis can influence skin health, demonstrating the existence of a gut-skin axis. Recently, improving skin health through probiotic interventions has been proposed, and micro-ecological skin care is becoming a popular concept. By regulating skin health and gut-skin axis interactions, probiotics can be used as potential management tools to suppress and improve skin diseases in multiple ways, including decreasing oxidative stress, suppressing inflammatory responses, and keeping immune effects. The purpose of this paper is to provide a comprehensive review of the application and mechanisms of probiotic-mediated gut microbiota homeostasis in skin care and to offer a theoretical basis for the application of probiotics in skin care.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Song X, Cao W, Wang Z, Li F, Xiao J, Zeng Q, Wang Y, Li S, Ye C, Wang Y, Zheng K. Nicotinamide n-Oxide Attenuates HSV-1-Induced Microglial Inflammation through Sirtuin-1/NF-κB Signaling. Int J Mol Sci 2022; 23:ijms232416085. [PMID: 36555725 PMCID: PMC9784159 DOI: 10.3390/ijms232416085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
HSV-1 is a typical neurotropic virus that infects the brain and causes keratitis, cold sores, and occasionally, acute herpes simplex encephalitis (HSE). The large amount of proinflammatory cytokines induced by HSV-1 infection is an important cause of neurotoxicity in the central nervous system (CNS). Microglia, as resident macrophages in CNS, are the first line of defense against neurotropic virus infection. Inhibiting the excessive production of inflammatory cytokines in overactivated microglia is a crucial strategy for the treatment of HSE. In the present study, we investigated the effect of nicotinamide n-oxide (NAMO), a metabolite mainly produced by gut microbe, on HSV-1-induced microglial inflammation and HSE. We found that NAMO significantly inhibits the production of cytokines induced by HSV-1 infection of microglia, such as IL-1β, IL-6, and TNF-α. In addition, NAMO promotes the transition of microglia from the pro-inflammatory M1 type to the anti-inflammatory M2 type. More detailed studies revealed that NAMO enhances the expression of Sirtuin-1 and its deacetylase enzymatic activity, which in turn deacetylates the p65 subunit to inhibit NF-κB signaling, resulting in reduced inflammatory response and ameliorated HSE pathology. Therefore, Sirtuin-1/NF-κB axis may be promising therapeutic targets against HSV-1 infection-related diseases including HSE.
Collapse
Affiliation(s)
- Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wenyan Cao
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zexu Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Feng Li
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ji Xiao
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiongzhen Zeng
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuan Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Shan Li
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Cuifang Ye
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Correspondence: ; Tel.: +86-755-26917542
| |
Collapse
|
7
|
Teng Y, Huang Y, Danfeng X, Tao X, Fan Y. The Role of Probiotics in Skin Photoaging and Related Mechanisms: A Review. Clin Cosmet Investig Dermatol 2022; 15:2455-2464. [PMID: 36420112 PMCID: PMC9677255 DOI: 10.2147/ccid.s388954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 07/21/2023]
Abstract
Solar ultraviolet radiation (UVR) is the primary pathogenetic factor in skin photoaging. It can disrupt cellular homeostasis by damaging DNA, inducing an inflammatory cascade, immunosuppression, and extracellular matrix (ECM) remodeling, resulting in a variety of dermatologic conditions. The skin microbiome plays an important role in the homeostasis and maintenance of healthy skin. Emerging evidence has indicated that highly diverse gut microbiome may also have an impact on the skin health, referred to as the gut-skin axis (GSA). Oral and topical probiotics through modulating the skin microbiome and gut-skin microbial interactions could serve as potential management to prevent and treat the skin photoaging by multiple pathways including reducing oxidative stress, inhibiting ECM remodeling, inhibiting the inflammatory cascade reaction, and maintaining immune homeostasis. In this review, the effects of oral and topical probiotics in skin photoaging and related mechanisms are both described systematically and comprehensively.
Collapse
Affiliation(s)
- Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Youming Huang
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xu Danfeng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaohua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yibin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
8
|
Chen H, Li Y, Xie X, Chen M, Xue L, Wang J, Ye Q, Wu S, Yang R, Zhao H, Zhang J, Ding Y, Wu Q. Exploration of the Molecular Mechanisms Underlying the Anti-Photoaging Effect of Limosilactobacillus fermentum XJC60. Front Cell Infect Microbiol 2022; 12:838060. [PMID: 35573770 PMCID: PMC9104571 DOI: 10.3389/fcimb.2022.838060] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Although lactic acid bacteria (LAB) were shown to be effective for preventing photoaging, the underlying molecular mechanisms have not been fully elucidated. Accordingly, we examined the anti-photoaging potential of 206 LAB isolates and discovered 32 strains with protective activities against UV-induced injury. All of these 32 LABs exhibited high levels of 2,2-diphenyl-picrylhydrazyl, as well as hydroxyl free radical scavenging ability (46.89–85.13% and 44.29–95.97%, respectively). Genome mining and metabonomic verification of the most effective strain, Limosilactobacillus fermentum XJC60, revealed that the anti-photoaging metabolite of LAB was nicotinamide (NAM; 18.50 mg/L in the cell-free serum of XJC60). Further analysis revealed that LAB-derived NAM could reduce reactive oxygen species levels by 70%, stabilize the mitochondrial membrane potential, and increase the NAD+/NADH ratio in UV-injured skin cells. Furthermore, LAB-derived NAM downregulated the transcript levels of matrix metalloproteinase (MMP)-1, MMP-3, interleukin (IL)-1β, IL-6, and IL-8 in skin cells. In vivo, XJC60 relieved imflammation and protected skin collagen fiber integrity in UV-injured Guinea pigs. Overall, our findings elucidate that LAB-derived NAM might protect skin from photoaging by stabilizing mitochondrial function, establishing a therotical foundation for the use of probiotics in the maintenance of skin health.
Collapse
Affiliation(s)
- Huizhen Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
- *Correspondence: Qingping Wu, ; Yu Ding,
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Qingping Wu, ; Yu Ding,
| |
Collapse
|
9
|
Du L, Li X, Gao Q, Yuan P, Sun Y, Chen Y, Huang B, Deng Y, Wang B. LncRNA nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) aggravates nucleus pulposus cell apoptosis and extracellular matrix degradation. Bioengineered 2022; 13:2746-2762. [PMID: 35094651 PMCID: PMC8973659 DOI: 10.1080/21655979.2021.2016087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Emerging reports uncover that long noncoding RNAs (lncRNAs) help regulate intervertebral disc degeneration (IVDD). Here, we probe the function of lncRNA nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) in IVDD. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was applied to verify the expression of NR2F1-AS1 and miR-145-5p in nucleus pulposus (NP) tissues from IVDD patients or NP cells dealt with IL-1β or TNF-α. Flow cytometry or the TdT-mediated dUTP nick end labeling (TUNEL) assay was performed to validate the apoptosis of NP cells with selective regulation of NR2F1-AS1 and miR-145-5p. ECM-related genes, FOXO1, Bax, and Bcl2 were evaluated by qRT-PCR or Western blot (WB). The targeted relationships between NR2F1-AS1 and miR-145-5p, miR-145-5p and FOXO1 were testified by the dual-luciferase reporter assay and the RNA immunoprecipitation (RIP) assay. Our outcomes substantiated that NR2F1-AS1 was up-regulated, while miR-145-5p was down-regulated in intervertebral disc tissues of IVDD patients or NP cells treated with IL-1β or TNF-α. Besides, overexpressing NR2F1-AS1 intensified ECM degradation and NP cell apoptosis induced by IL-1β, while knocking down NR2F1-AS1 or up-regulating miR-145-5p reversed IL-1β-mediated effects in NP cells. Meanwhile, NR2F1-AS1 choked miR-145-5p and abated its effects in NP cells. This study confirms that NR2F1-AS1 modulates IVDD progression by up-regulating the FOXO1 pathway through the sponge of miR-145-5p as a competitive endogenous RNA (ceRNA).
Collapse
Affiliation(s)
- Longlong Du
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuefeng Li
- Department of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Qimeng Gao
- Department of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Puwei Yuan
- Department of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Yindi Sun
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingpu Chen
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bo Huang
- Department of Orthopaedic, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Yu Deng
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baohui Wang
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|