1
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
2
|
Tuominen LJ, Tuohinen S, Lundell RV, Räisänen-Sokolowski AK, Wuorimaa T. The effect of a single closed-circuit rebreather decompression dive in extremely cold water to cardiac function. Eur J Appl Physiol 2024; 124:1693-1702. [PMID: 38189825 PMCID: PMC11130038 DOI: 10.1007/s00421-023-05392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Dive-induced cardiac and hemodynamic changes are caused by various mechanisms, and they are aggravated by cold water. Therefore, aging divers with pre-existing cardiovascular conditions may be at risk of acute myocardial infarction, heart failure, or arrhythmias while diving. The aim of this study was to assess the effect of a single decompression CCR dive in arctic cold water on cardiac function in Finnish technical divers. METHODS Thirty-nine divers performed one identical 45 mfw CCR dive in 2-4 °C water. Hydration and cardiac functions were assessed before and after the dive. Detection of venous gas embolization was performed within 120 min after the dive. RESULTS The divers were affected by both cold-water-induced hemodynamic changes and immersion-related fluid loss. Both systolic and diastolic functions were impaired after the dive although the changes in cardiac functions were subtle. Venous inert gas bubbles were detected in all divers except for one. Venous gas embolism did not affect systolic or diastolic function. CONCLUSION A single trimix CCR dive in arctic cold water seemed to debilitate both systolic and diastolic function. Although the changes were subtle, they appeared parallel over several parameters. This indicates a real post-dive deterioration in cardiac function instead of only volume-dependent changes. These changes are without a clinical significance in healthy divers. However, in a population with pre-existing or underlying heart problems, such changes may provoke symptomatic problems during or after the dive.
Collapse
Affiliation(s)
- Laura J Tuominen
- Department of Emergency, Emergency Medical Services, Centre for Prehospital Emergency Care, Tampere, Finland.
- Department of Pathology, Helsinki University, Helsinki, Finland.
- Centre for Military Medicine, Finnish Defence Forces, Helsinki, Finland.
| | - Suvi Tuohinen
- Heart and Lung Center, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | - Richard V Lundell
- Department of Pathology, Helsinki University, Helsinki, Finland
- Centre for Military Medicine, Finnish Defence Forces, Helsinki, Finland
| | - Anne K Räisänen-Sokolowski
- Centre for Military Medicine, Finnish Defence Forces, Helsinki, Finland
- DAN Europe Foundation, Finnish Division, Roseto, Italy
- Department of Pathology, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | - Tomi Wuorimaa
- Diving Medical Centre, Centre for Military Medicine, Upinniemi, Finland
| |
Collapse
|
3
|
Kjeld T, Krag TO, Brenøe A, Møller AM, Arendrup HC, Højberg J, Fuglø D, Hancke S, Tolbod LP, Gormsen LC, Vissing J, Hansen EG. Hemoglobin concentration and blood shift during dry static apnea in elite breath hold divers. Front Physiol 2024; 15:1305171. [PMID: 38745836 PMCID: PMC11092981 DOI: 10.3389/fphys.2024.1305171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/23/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Elite breath-hold divers (BHD) enduring apneas of more than 5 min are characterized by tolerance to arterial blood oxygen levels of 4.3 kPa and low oxygen-consumption in their hearts and skeletal muscles, similar to adult seals. Adult seals possess an adaptive higher hemoglobin-concentration and Bohr effect than pups, and when sedated, adult seals demonstrate a blood shift from the spleen towards the brain, lungs, and heart during apnea. We hypothesized these observations to be similar in human BHD. Therefore, we measured hemoglobin- and 2,3-biphosphoglycerate-concentrations in BHD (n = 11) and matched controls (n = 11) at rest, while myocardial mass, spleen and lower extremity volumes were assessed at rest and during apnea in BHD. Methods and results After 4 min of apnea, left ventricular myocardial mass (LVMM) determined by 15O-H2O-PET/CT (n = 6) and cardiac MRI (n = 6), was unaltered compared to rest. During maximum apnea (∼6 min), lower extremity volume assessed by DXA-scan revealed a ∼268 mL decrease, and spleen volume, assessed by ultrasonography, decreased ∼102 mL. Compared to age, BMI and VO2max matched controls (n = 11), BHD had similar spleen sizes and 2,3- biphosphoglycerate-concentrations, but higher total hemoglobin-concentrations. Conclusion Our results indicate: 1) Apnea training in BHD may increase hemoglobin concentration as an oxygen conserving adaptation similar to adult diving mammals. 2) The blood shift during dry apnea in BHD is 162% more from the lower extremities than from the spleen. 3) In contrast to the previous theory of the blood shift demonstrated in sedated adult seals, blood shift is not towards the heart during dry apnea in humans.
Collapse
Affiliation(s)
- Thomas Kjeld
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas O. Krag
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Brenøe
- Department of Clinical Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ann Merete Møller
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Højberg
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dan Fuglø
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren Hancke
- Department of Clinical Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Egon Godthaab Hansen
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Njire Braticevic M, Zarak M, Simac B, Perovic A, Dumic J. Effects of recreational SCUBA diving practiced once a week on neurohormonal response and myokines-mediated communication between muscles and the brain. Front Cardiovasc Med 2023; 10:1074061. [PMID: 37063956 PMCID: PMC10090300 DOI: 10.3389/fcvm.2023.1074061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
ObjectiveDuring physical activity, activation of muscular, endocrine, and nervous systems, results in intensive crosstalk between muscles and other organs, which enables response to physiological stress. In SCUBA diving, extreme environmental conditions represent an additional challenge for homeostasis maintenance, but underlying mechanisms are largely unknown. We aimed to contribute to the understanding of neurohormonal response and muscle-brain crosstalk by measuring the concentrations of the selected hormones secreted by the pituitary-target organ axis and myokines involved in the muscle-brain endocrine loop in recreational SCUBA (rSCUBA) divers.MethodsFourteen male divers performed five open-water recreational dives (one per week, depth of 20–30 m, lasting 30 min, between 9 and 10 am), after a winter non-diving period of 5 months. Blood samples were collected immediately before and after the first, third, and fifth dives. Adrenocorticotropic hormone (ACTH), cortisol, thyroid-stimulating hormone (TSH), free thyroxine (fT4), prolactin, total testosterone, growth hormone (GH), insulin-like growth factor-1 (IGF-1), irisin, brain-derived neurotrophic factor (BDNF), S100B, glial fibrillary acidic protein (GFAP), and neuron-specific enolase (NSE) were measured using commercially available immunoassays.ResultsCortisol and ACTH levels decreased after every dive, while total testosterone decreased only after the first dive. No significant changes in post-dive values, as well as the cumulative effect on any other measured hormone, were observed. Although irisin and BDNF levels decreased after the first and third dives, the fifth dive caused a significant increase in both myokines. Changes in IGF-1 levels were not observed. All three dives caused a significant increase in S100B levels. A statistically significant decrease in GFAP concentration was observed after every dive, while NSE pre-dive concentration declined over the studied period. The cumulative effect on myokine levels was reflected in a continuous decline in irisin and BDNF pre-dive levels throughout the studied period, but an increasing trend after the fifth dive was observed.ConclusionsObserved changes in myokines and hormone levels point to a specific response to rSCUBA practiced once a week, most likely due to extreme environmental conditions. Further studies on communication between muscles and other organ systems, particularly on the muscle-brain endocrine loop, are required for a deeper understanding of the adaptation mechanisms to this kind of physiological stress.
Collapse
Affiliation(s)
- Marina Njire Braticevic
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
- Correspondence: Marina Njire Braticevic
| | - Marko Zarak
- Clinical Department for Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Brankica Simac
- Clinical Department for Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia
| | - Antonija Perovic
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
| | - Jerka Dumic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Weenink RP, Wingelaar TT. Commentary: The circulatory effects of increased hydrostatic pressure due to immersion and submersion. Front Physiol 2022; 13:1029393. [PMID: 36330213 PMCID: PMC9623045 DOI: 10.3389/fphys.2022.1029393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robert P. Weenink
- Diving Medical Center, Royal Netherlands Navy, Den Helder, Netherlands
- Department of Anesthesiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
- *Correspondence: Robert P. Weenink,
| | - Thijs T. Wingelaar
- Diving Medical Center, Royal Netherlands Navy, Den Helder, Netherlands
- Department of Anesthesiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
6
|
Regnard J, Bouhaddi M, Castagna O, Mourot L. Commentary: The Circulatory Effects of Increased Hydrostatic Pressure Due to Immersion and Submersion. Front Physiol 2022; 13:830759. [PMID: 35153839 PMCID: PMC8829458 DOI: 10.3389/fphys.2022.830759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jacques Regnard
- EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, University of Bourgogne Franche-Comté, Besançon, France
- *Correspondence: Jacques Regnard
| | - Malika Bouhaddi
- Department of Physiology and Functional Testing, University Hospitals of Besançon, EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, University of Bourgogne Franche-Comté, Besançon, France
| | - Olivier Castagna
- Underwater Research Team (ERRSO), Military Biomedical Research Institute (IRBA), Toulon, France
- UPR 66312 Human Motricity and Sport Health Expertise Laboratory (LAHMES), Azur Coast Nice University, Nice, France
| | - Laurent Mourot
- EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, Exercise Performance Health Innovation (EPHI) Platform, University of Bourgogne Franche-Comté, Besançon, France
- Division for Physical Education, National Research Tomsk Polytechnic University, Tomsk Oblast, Russia
| |
Collapse
|
7
|
Swimming-Induced Pulmonary Edema: New Data Sheds a Light on True Incidence. Chest 2021; 160:1594-1595. [PMID: 34743842 DOI: 10.1016/j.chest.2021.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
|