1
|
Lv Y, Yu Z, Zhang P, Zhang X, Li H, Liang T, Guo Y, Cheng L, Peng F. The structure and function of FUN14 domain-containing protein 1 and its contribution to cardioprotection by mediating mitophagy. Front Pharmacol 2024; 15:1389953. [PMID: 38828457 PMCID: PMC11140143 DOI: 10.3389/fphar.2024.1389953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiovascular disease (CVD) is a serious public health risk, and prevention and treatment efforts are urgently needed. Effective preventive and therapeutic programs for cardiovascular disease are still lacking, as the causes of CVD are varied and may be the result of a multifactorial combination. Mitophagy is a form of cell-selective autophagy, and there is increasing evidence that mitophagy is involved in cardioprotective processes. Recently, many studies have shown that FUN14 domain-containing protein 1 (FUNDC1) levels and phosphorylation status are highly associated with many diseases, including heart disease. Here, we review the structure and functions of FUNDC1 and the path-ways of its mediated mitophagy, and show that mitophagy can be effectively activated by dephosphorylation of Ser13 and Tyr18 sites, phosphorylation of Ser17 site and ubiquitination of Lys119 site in FUNDC1. By effectively activating or inhibiting excessive mitophagy, the quality of mitochondria can be effectively controlled. The main reason is that, on the one hand, improper clearance of mitochondria and accumulation of damaged mitochondria are avoided, and on the other hand, excessive mitophagy causing apoptosis is avoided, both serving to protect the heart. In addition, we explore the possible mechanisms by which FUNDC1-mediated mitophagy is involved in exercise preconditioning (EP) for cardioprotection. Finally, we also point out unresolved issues in FUNDC1 and its mediated mitophagy and give directions where further research may be needed.
Collapse
Affiliation(s)
- Yuhu Lv
- College of Physical Education, Guangdong University of Education, Guangzhou, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, Guangzhou, China
| | - Zhengze Yu
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Peiwen Zhang
- College of Nursing and Rehabilitation, Xi an FanYi University, Xi’an, China
| | - Xiqian Zhang
- College of Physical Education, Guangdong University of Education, Guangzhou, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, Guangzhou, China
| | - Huarui Li
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Ting Liang
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Yanju Guo
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Lin Cheng
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| |
Collapse
|
2
|
Shen C, Chen X, Cao Y, Du Y, Xu X, Wu Q, Lin L, Qin Y, Meng R, Gan L, Zhang J. Alpha-lipoic Acid Protects Against Chronic Alcohol Consumption-induced Cardiac Damage by the Aldehyde Dehydrogenase 2-associated PINK/Parkin Pathway. J Cardiovasc Pharmacol 2023; 82:407-418. [PMID: 37657070 DOI: 10.1097/fjc.0000000000001480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
ABSTRACT Chronic alcohol intake contributes to high mortality rates due to ethanol-induced cardiac hypertrophy and contractile dysfunction, which are accompanied by increased oxidative stress and disrupted mitophagy. Alpha-lipoic acid (α-LA), a well-known antioxidant, has been shown to protect against cardiac hypertrophy and inflammation. However, little is known about its role and mechanism in the treatment of alcoholic cardiomyopathy. Here, we evaluated the role of α-LA in alcohol-induced cardiac damage by feeding mice a 4.8% (v/v) alcohol diet with or without α-LA for 6 w. Our results suggested that chronic alcohol consumption increased mortality, blood alcohol concentrations, and serum aldehyde levels, but a-LA attenuated the elevations in mortality and aldehydes. Chronic alcohol intake also induced cardiac dysfunction, including enlarged left ventricles, reduced left ventricular ejection fraction, enhanced cardiomyocyte size, and increased serum levels of brain natriuretic peptide, lactate dehydrogenase, and creatine kinase myocardial isoenzyme. Moreover, alcohol intake led to the accumulation of collagen fiber and mitochondrial dysfunction, the effects of which were alleviated by α-LA. In addition, α-LA intake also prevented the increase in reactive oxygen species production and the decrease in mitochondrial number that were observed after alcohol consumption. Chronic alcohol exposure activated PINK1/Parkin-mediated mitophagy. These effects were diminished by α-LA intake by the activation of aldehyde dehydrogenase 2. Our data indicated that α-LA helps protect cardiac cells against the effects of chronic alcohol intake, likely by inhibiting PINK1/Parkin-related mitophagy through the activation of aldehyde dehydrogenase 2.
Collapse
Affiliation(s)
- Cheng Shen
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining, Shandong, China
| | - Xueheng Chen
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining, Shandong, China
| | - Yong Cao
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining, Shandong, China
| | - Yanyan Du
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining, Shandong, China
| | - Xuan Xu
- Department of Ultrasound, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qingjing Wu
- Deprartment of Cardiology, Jinxiang People's Hospital, Jining, Shandong, China
| | - Lizhi Lin
- Clinical Medical College, Jining Medical University, Jining, Shandong, China; and
| | - Yiran Qin
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Runqi Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, China; and
| | - Lijun Gan
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining, Shandong, China
| | - Jinguo Zhang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Jining, Shandong, China
| |
Collapse
|
3
|
Liu C, Li Z, Li B, Liu W, Zhang S, Qiu K, Zhu W. Relationship between ferroptosis and mitophagy in cardiac ischemia reperfusion injury: a mini-review. PeerJ 2023; 11:e14952. [PMID: 36935924 PMCID: PMC10019339 DOI: 10.7717/peerj.14952] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cardiovascular diseases (CVD), with high morbidity and mortality, seriously affect people's life and social development. Clinically, reperfusion therapy is typically used to treat ischemic cardiomyopathy, such as severe coronary heart disease and acute myocardial infarction. However, reperfusion therapy can lead to myocardial ischemia reperfusion injury (MIRI), which can affect the prognosis of patients. Studying the mechanisms of MIRI can help us improve the treatment of MIRI. The pathological process of MIRI involves many mechanisms such as ferroptosis and mitophagy. Ferroptosis can exacerbate MIRI, and regulation of mitophagy can alleviate MIRI. Both ferroptosis and mitophagy are closely related to ROS, but there is no clear understanding of the relationship between ferroptosis and mitophagy. In this review, we analyzed the relationship between ferroptosis and mitophagy according to the role of mTOR, NLPR3 and HIF. In addition, simultaneous regulation of mitophagy and ferroptosis may be superior to single therapy for MIRI. We summarized potential drugs that can regulate mitophagy and/or ferroptosis, hoping to provide reference for the development of drugs and methods for MIRI treatment.
Collapse
Affiliation(s)
- Cuihua Liu
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, Hubei Province, China
| | - Zunjiang Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Botao Li
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, Hubei Province, China
| | - Wei Liu
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, Hubei Province, China
| | - Shizhong Zhang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, Hubei Province, China
| | - Kuncheng Qiu
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, Hubei Province, China
| | - Wei Zhu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Peugnet V, Chwastyniak M, Mulder P, Lancel S, Bultot L, Fourny N, Renguet E, Bugger H, Beseme O, Loyens A, Heyse W, Richard V, Amouyel P, Bertrand L, Pinet F, Dubois-Deruy E. Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes. Antioxidants (Basel) 2022; 11:antiox11040723. [PMID: 35453408 PMCID: PMC9029275 DOI: 10.3390/antiox11040723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Heart failure, mostly associated with cardiac hypertrophy, is a major cause of illness and death. Oxidative stress causes accumulation of reactive oxygen species (ROS), leading to mitochondrial dysfunction, suggesting that mitochondria-targeted therapies could be effective in this context. The purpose of this work was to determine whether mitochondria-targeted therapies could improve cardiac hypertrophy induced by mitochondrial ROS. We used neonatal (NCMs) and adult (ACMs) rat cardiomyocytes hypertrophied by isoproterenol (Iso) to induce mitochondrial ROS. A decreased interaction between sirtuin 3 and superoxide dismutase 2 (SOD2) induced SOD2 acetylation on lysine 68 and inactivation, leading to mitochondrial oxidative stress and dysfunction and hypertrophy after 24 h of Iso treatment. To counteract these mechanisms, we evaluated the impact of the mitochondria-targeted antioxidant mitoquinone (MitoQ). MitoQ decreased mitochondrial ROS and hypertrophy in Iso-treated NCMs and ACMs but altered mitochondrial structure and function by decreasing mitochondrial respiration and mitophagy. The same decrease in mitophagy was found in human cardiomyocytes but not in fibroblasts, suggesting a cardiomyocyte-specific deleterious effect of MitoQ. Our data showed the importance of mitochondrial oxidative stress in the development of cardiomyocyte hypertrophy. We observed that targeting mitochondria by MitoQ in cardiomyocytes impaired the metabolism through defective mitophagy, leading to accumulation of deficient mitochondria.
Collapse
Affiliation(s)
- Victoriane Peugnet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Maggy Chwastyniak
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Paul Mulder
- Normandie Univ, UNIROUEN, Inserm U1096, FHU-REMOD-HF, 76000 Rouen, France; (P.M.); (V.R.)
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Laurent Bultot
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Bruxelles, Belgium; (L.B.); (N.F.); (E.R.); (L.B.)
| | - Natacha Fourny
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Bruxelles, Belgium; (L.B.); (N.F.); (E.R.); (L.B.)
| | - Edith Renguet
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Bruxelles, Belgium; (L.B.); (N.F.); (E.R.); (L.B.)
| | - Heiko Bugger
- Department of Cardiology and Angiology I, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany;
| | - Olivia Beseme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Anne Loyens
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche Contre le Cancer de Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France;
| | - Wilfried Heyse
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Vincent Richard
- Normandie Univ, UNIROUEN, Inserm U1096, FHU-REMOD-HF, 76000 Rouen, France; (P.M.); (V.R.)
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Bruxelles, Belgium; (L.B.); (N.F.); (E.R.); (L.B.)
| | - Florence Pinet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
- Correspondence: (F.P.); (E.D.-D.); Tel.: +33-(0)3-20-87-72-15 (F.P.); +33-(0)3-20-87-73-62 (E.D.-D.)
| | - Emilie Dubois-Deruy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
- Correspondence: (F.P.); (E.D.-D.); Tel.: +33-(0)3-20-87-72-15 (F.P.); +33-(0)3-20-87-73-62 (E.D.-D.)
| |
Collapse
|
5
|
Transcriptomic and Lipidomic Mapping of Macrophages in the Hub of Chronic Beta-Adrenergic-Stimulation Unravels Hypertrophy-, Proliferation-, and Lipid Metabolism-Related Genes as Novel Potential Markers of Early Hypertrophy or Heart Failure. Biomedicines 2022; 10:biomedicines10020221. [PMID: 35203431 PMCID: PMC8869621 DOI: 10.3390/biomedicines10020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Sympathetic nervous system overdrive with chronic release of catecholamines is the most important neurohormonal mechanism activated to maintain cardiac output in response to heart stress. Beta-adrenergic signaling behaves first as a compensatory pathway improving cardiac contractility and maladaptive remodeling but becomes dysfunctional leading to pathological hypertrophy and heart failure (HF). Cardiac remodeling is a complex inflammatory syndrome where macrophages play a determinant role. This study aimed at characterizing the temporal transcriptomic evolution of cardiac macrophages in mice subjected to beta-adrenergic-stimulation using RNA sequencing. Owing to a comprehensive bibliographic analysis and complementary lipidomic experiments, this study deciphers typical gene profiles in early compensated hypertrophy (ECH) versus late dilated remodeling related to HF. We uncover cardiac hypertrophy- and proliferation-related transcription programs typical of ECH or HF macrophages and identify lipid metabolism-associated and Na+ or K+ channel-related genes as markers of ECH and HF macrophages, respectively. In addition, our results substantiate the key time-dependent role of inflammatory, metabolic, and functional gene regulation in macrophages during beta-adrenergic dependent remodeling. This study provides important and novel knowledge to better understand the prevalent key role of resident macrophages in response to chronically activated beta-adrenergic signaling, an effective diagnostic and therapeutic target in failing hearts.
Collapse
|
6
|
Turkieh A, El Masri Y, Pinet F, Dubois-Deruy E. Mitophagy Regulation Following Myocardial Infarction. Cells 2022; 11:cells11020199. [PMID: 35053316 PMCID: PMC8774240 DOI: 10.3390/cells11020199] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Mitophagy, which mediates the selective elimination of dysfunctional mitochondria, is essential for cardiac homeostasis. Mitophagy is regulated mainly by PTEN-induced putative kinase protein-1 (PINK1)/parkin pathway but also by FUN14 domain-containing 1 (FUNDC1) or Bcl2 interacting protein 3 (BNIP3) and BNIP3-like (BNIP3L/NIX) pathways. Several studies have shown that dysregulated mitophagy is involved in cardiac dysfunction induced by aging, aortic stenosis, myocardial infarction or diabetes. The cardioprotective role of mitophagy is well described, whereas excessive mitophagy could contribute to cell death and cardiac dysfunction. In this review, we summarize the mechanisms involved in the regulation of cardiac mitophagy and its role in physiological condition. We focused on cardiac mitophagy during and following myocardial infarction by highlighting the role and the regulation of PI NK1/parkin-; FUNDC1-; BNIP3- and BNIP3L/NIX-induced mitophagy during ischemia and reperfusion.
Collapse
|