1
|
Rock CG, Kwak ST, Luo A, Yang X, Yun K, Chang YH. Realizing the gravity of the simulation: adaptation to simulated hypogravity leads to altered predictive control. Front Physiol 2024; 15:1397016. [PMID: 38854629 PMCID: PMC11157081 DOI: 10.3389/fphys.2024.1397016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Accurate predictive abilities are important for a wide variety of animal behaviors. Inherent to many of these predictions is an understanding of the physics that underlie the behavior. Humans are specifically attuned to the physics on Earth but can learn to move in other environments (e.g., the surface of the Moon). However, the adjustments made to their physics-based predictions in the face of altered gravity are not fully understood. The current study aimed to characterize the locomotor adaptation to a novel paradigm for simulated reduced gravity. We hypothesized that exposure to simulated hypogravity would result in updated predictions of gravity-based movement. Twenty participants took part in a protocol that had them perform vertically targeted countermovement jumps before (PRE), during, and after (POST) a physical simulation of hypogravity. Jumping in simulated hypogravity had different neuromechanics from the PRE condition, with reduced ground impulses (p ≤ .009) and muscle activity prior to the time of landing (i.e., preactivation; p ≤ .016). In the 1 g POST condition, muscle preactivation remained reduced (p ≤ .033) and was delayed (p ≤ .008) by up to 33% for most muscles of the triceps surae, reflecting an expectation of hypogravity. The aftereffects in muscle preactivation, along with little-to-no change in muscle dynamics during ground contact, point to a neuromechanical adaptation that affects predictive, feed-forward systems over feedback systems. As such, we conclude that the neural representation, or internal model, of gravity is updated after exposure to simulated hypogravity.
Collapse
Affiliation(s)
- Chase G. Rock
- Comparative Neuromechanics Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | | | | | | | | | - Young-Hui Chang
- Comparative Neuromechanics Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
Waldvogel J, Freyler K, Ritzmann R, Gollhofer A. Energy transfer in reactive movements as a function of individual stretch load. Front Physiol 2023; 14:1265443. [PMID: 38098807 PMCID: PMC10720888 DOI: 10.3389/fphys.2023.1265443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Background: By directly recording electromyographic activity profiles and muscle-tendon interaction, this study aimed to elucidate the mechanisms why well-trained track and field athletes (experts) are able to outperform untrained individuals without former systematic experience in reactive jump training (novices). In particular, reactive power output and the elastic recoil properties of the muscle-tendon unit (MTU) were of special interest. For this purpose, stiffness regulation on muscle and joint level, energy management in terms of storing or dissipating elastic energy were compared between experts and novices during various stretch loads. Methods: Experts were compared with novices during reactive drop jumps (DJs) from drop heights ranging between 25 and 61 cm. Delta kinetic energy (Ekin) was calculated as the difference between the Ekin at take-off and ground contact (GC) to determine energy management. By recording electromyography of the lower limb muscles, in vivo fascicle dynamics (gastrocnemius medialis) and by combining kinematics and kinetics in a 3D inverse dynamics approach to compute ankle and knee joint kinetics, this study aimed to compare reactive jump performance, the neuromuscular activity and muscle-tendon interaction between experts and novices among the tested stretch loads. Results: Experts demonstrated significantly higher power output during DJs. Among all drop heights experts realized higher delta Ekin compared to novices. Consequently, higher reactive jump performance shown for experts was characterized by shorter GC time (GCT), higher jump heights and higher neuromuscular activity before and during the GC phase compared to novices. Concomitantly, experts were able to realize highest leg stiffness and delta Ekin in the lowest stretch load; however, both groups compensated the highest stretch load by prolonged GCT and greater joint flexion. On muscle level, experts work quasi-isometrically in the highest stretch load, while in novices GM fascicles were forcefully stretched. Conclusion: Group-specific stiffness regulation and elastic recoil properties are primarily influenced by the neuromuscular system. Due to their higher neuromuscular activity prior and during the GC phase, experts demonstrate higher force generating capacity. A functionally stiffer myotendinous system through enhanced neuromuscular input enables the experts loading their elastic recoil system more efficiently, thus realizing higher reactive power output and allowing a higher amount of energy storage and return. This mechanism is regulated in a stretch load dependent manner.
Collapse
Affiliation(s)
- Janice Waldvogel
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
3
|
Waldvogel J, Freyler K, Helm M, Monti E, Stäudle B, Gollhofer A, Narici MV, Ritzmann R, Albracht K. Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks. J Appl Physiol (1985) 2023; 134:190-202. [PMID: 36476161 DOI: 10.1152/japplphysiol.00279.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.NEW & NOTEWORTHY For the first time, the neuromechanics of distinct movement modalities that fundamentally differ in their energy management function have been investigated during overload systematically induced by hypergravity. Parabolic flight provides a unique experimental setting that allows near-natural movement execution without the confounding effects typically associated with load variation. Our findings show that gravity-adjusted muscle activities are inversely affected within jumps and landings. Specifically, in 1.8 G, typical task-specific differences in neuromuscular activity are reduced during the center of mass deceleration phase, resulting in fascicle lengthening, which is associated with energy dissipation.
Collapse
Affiliation(s)
- Janice Waldvogel
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Kathrin Freyler
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Michael Helm
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Elena Monti
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Department of Neurosciences, Imaging and Clinical Science, University of Chieti "G. D'annunzio", Chieti, Italy
| | - Benjamin Stäudle
- Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Aachen, Germany
| | - Albert Gollhofer
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ramona Ritzmann
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Kirsten Albracht
- Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Aachen, Germany.,Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| |
Collapse
|