1
|
Zhu S, Chen X, Xia S, Li Q, Ye Z, Zhao S, Liu K, Liu F. Hexamerin and allergen are required for female reproduction in the American cockroach, Periplaneta americana. INSECT SCIENCE 2024; 31:186-200. [PMID: 37327125 DOI: 10.1111/1744-7917.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
Reproduction is of great importance for the continuation of the species. In insects, the fat body is the major tissue for nutrient storage and involved in vitellogenesis, which is essential for female reproduction. Here, 2 proteins, hexamerin and allergen, were separated from the fat bodies of adult female American cockroaches (Periplaneta americana) and identified as storage proteins, encoding for 733 amino acids with molecular weight of 87.88 kDa and 686 amino acids with molecular weight of 82.18 kDa, respectively. The encoding genes of these 2 storage proteins are mainly expressed in the fat body. RNA interference-mediated knockdown of Hexamerin and Allergen in the early stage of the first reproductive cycle in females suppressed vitellogenesis and ovarian maturation, indicating that these storage proteins are involved in controlling reproduction. Importantly, the expression of Hexamerin and Allergen was repressed by knockdown of the juvenile hormone (JH) receptor gene Met and the primary response gene Kr-h1, and was induced by methoprene, a JH analog, in both in vivo and in vitro experiments. Altogether, we have determined that hexamerin and allergen are identified as storage proteins and play an important role in promoting female reproduction in the American cockroach. The expression of their encoding genes is induced by JH signaling. Our data reveal a novel mechanism by which hexamerin and allergen are necessary for JH-stimulated female reproduction.
Collapse
Affiliation(s)
- Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sishi Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ziqi Ye
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shaoting Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kexin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Maritz-Olivier C, Ferreira M, Olivier NA, Crafford J, Stutzer C. Mining gene expression data for rational identification of novel drug targets and vaccine candidates against the cattle tick, Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:291-317. [PMID: 37755526 PMCID: PMC10562289 DOI: 10.1007/s10493-023-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Control of complex parasites via vaccination remains challenging, with the current combination of vaccines and small drugs remaining the choice for an integrated control strategy. Studies conducted to date, are providing evidence that multicomponent vaccines will be needed for the development of protective vaccines against endo- and ectoparasites, though multicomponent vaccines require an in-depth understanding of parasite biology which remains insufficient for ticks. With the rapid development and spread of acaricide resistance in ticks, new targets for acaricide development also remains to be identified, along with novel targets that can be exploited for the design of lead compounds. In this study, we analysed the differential gene expression of Rhipicephalus microplus ticks that were fed on cattle vaccinated with a multi-component vaccine (Bm86 and 3 putative Bm86-binding proteins). The data was scrutinised for the identification of vaccine targets, small drug targets and novel pathways that can be evaluated in future studies. Limitations associated with targeting novel proteins for vaccine and/or drug design is also discussed and placed into the context of challenges arising when targeting large protein families and intracellular localised proteins. Lastly, this study provide insight into how Bm86-based vaccines may reduce successful uptake and digestion of the bloodmeal and overall tick fecundity.
Collapse
Affiliation(s)
- Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| | - Mariëtte Ferreira
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nicholas A Olivier
- DNA Microarray Laboratory, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jan Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Christian Stutzer
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
3
|
Luo Y, Liu D, Wang Y, Zhang F, Xu Y, Pu Q, Zhao L, Wei T, Fan T, Lou Y, Liu S. Combined analysis of the proteome and metabolome provides insight into microRNA-1174 function in Aedes aegypti mosquitoes. Parasit Vectors 2023; 16:271. [PMID: 37559132 PMCID: PMC10413549 DOI: 10.1186/s13071-023-05859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Pathogenic viruses can be transmitted by female Aedes aegypti (Ae. aegypti) mosquitoes during blood-meal acquisition from vertebrates. Silencing of mosquito- and midgut-specific microRNA (miRNA) 1174 (miR-1174) impairs blood intake and increases mortality. Determining the identity of the proteins and metabolites that respond to miR-1174 depletion will increase our understanding of the molecular mechanisms of this miRNA in controlling blood-feeding and nutrient metabolism of mosquitoes. METHODS Antisense oligonucleotides (antagomirs [Ant]) Ant-1174 and Ant-Ct were injected into female Ae. aegypti mosquitoes at 12-20 h posteclosion, and depletion of miR-1174 was confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). Ant-1174-injected and control mosquitoes were collected before the blood meal at 72 h post-injection for tandem mass tag-based proteomic analysis and liquid chromatography-tandom mass spectrometry non-target metabolomic analysis to identify differentially expressed proteins and metabolites, respectively. RNA interference (RNAi) using double-stranded RNA (dsRNA) injection was applied to investigate the biological roles of these differentially expressed genes. The RNAi effect was verified by RT-qPCR and western blotting assays. Triglyceride content and ATP levels were measured using the appropriate assay kits, following the manufacturers' instructions. Statistical analyses were conducted with GraphPad7 software using the Student's t-test. RESULTS Upon depletion of mosquito- and midgut-specific miR-1174, a total of 383 differentially expressed proteins (DEPs) were identified, among which 258 were upregulated and 125 were downregulated. Functional analysis of these DEPs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggested that miR-1174 plays important regulatory roles in amino acid metabolism, nucleotide metabolism, fatty acid metabolism and sugar metabolism pathways. A total of 292 differential metabolites were identified, of which 141 were upregulated and 151 were downregulated. Integrative analysis showed that the associated differential proteins and metabolites were mainly enriched in a variety of metabolic pathways, including glycolysis, citrate cycle, oxidative phosphorylation and amino acid metabolism. Specifically, the gene of one upregulated protein in miR-1174-depleted mosquitoes, purine nucleoside phosphorylase (PNP; AAEL002269), was associated with the purine, pyrimidine and niacin-nicotinamide metabolism pathways. PNP knockdown seriously inhibited blood digestion and ovary development and increased adult mortality. Mechanically, PNP depletion led to a significant downregulation of the vitellogenin gene (Vg); in addition, some important genes in the ecdysone signaling and insulin-like peptide signaling pathways related to ovary development were affected. CONCLUSIONS This study demonstrates differential accumulation of proteins and metabolites in miR-1174-depleted Ae. aegypti mosquitoes using proteomic and metabolomic techniques. The results provide functional evidence for the role of the upregulated gene PNP in gut physiological activities. Our findings highlight key molecular changes in miR-1174-depleted Ae. aegypti mosquitoes and thus provide a basis and novel insights for increased understanding of the molecular mechanism involved in a lineage-specific miRNA in mosquito vectors.
Collapse
Affiliation(s)
- Yangrui Luo
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Dun Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Yuanmei Wang
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Fan Zhang
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Yuqi Lou
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
4
|
Wang SS, Wang LL, Pu YX, Liu JY, Wang MX, Zhu J, Shen ZY, Shen XJ, Tang SM. Exorista sorbillans (Diptera: Tachinidae) parasitism shortens host larvae growth duration by regulating ecdysone and juvenile hormone titers in Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7187155. [PMID: 37256698 DOI: 10.1093/jisesa/iead034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
The tachinid fly, Exorista sorbillans, is a notorious ovolarviparous endoparasitoid of the silkworm, Bombyx mori, causing severe damage to silkworm cocoon industry. Silkworm larvae show typically precocious wandering behavior after being parasitized by E. sorbillans; however, the underlying molecular mechanism remains unexplored. Herein, we investigated the changes in the levels of 20-hydroxyecdysone (20E) and juvenile hormone (JH) titer, and they both increased in the hemolymph of parasitized silkworms. Furthermore, we verified the expression patterns of related genes, which showed an upregulation of 20E signaling and biosynthesis genes but a significant downregulation of ecdysone oxidase (EO), a 20E inactivation enzyme, in parasitized silkworms. In addition, related genes of the JH signaling were activated in parasitized silkworms, while related genes of the JH degradation pathway were suppressed, resulting in an increase in JH titer. Notably, the precocious wandering behavior of parasitized silkworms was partly recoverable by silencing the transcriptions of BmCYP302A1 or BmCYP307A1 genes. Our findings suggest that the developmental duration of silkworm post parasitism could be shortened by regulation of 20E and JH titers, which may help silkworm to resist the E. sorbillans infestation. These findings provide a basis for deeper insight into the interplay between silkworms and E. sorbillans and may serve as a reference for the development of a novel approach to control silkworm myiasis.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Lei-Lei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yue-Xia Pu
- Guangxi General Station for Sericulture Technology Popularization, Nanning, Guangxi 530007, China
| | - Ji-Yin Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Mei-Xian Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Juan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Zhong-Yuan Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Xing-Jia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Shun-Ming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| |
Collapse
|
5
|
Dai ML, Ye WT, Jiang XJ, Feng P, Zhu QY, Sun HN, Li FC, Wei J, Li B. Effect of Tachinid Parasitoid Exorista japonica on the Larval Development and Pupation of the Host Silkworm Bombyx mori. Front Physiol 2022; 13:824203. [PMID: 35250625 PMCID: PMC8889078 DOI: 10.3389/fphys.2022.824203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
The Tachinidae are natural enemies of many lepidopteran and coleopteran pests of crops, forests, and fruits. However, host-tachinid parasitoid interactions have been largely unexplored. In this study, we investigated the effects of tachinids on host biological traits, using Exorista japonica, a generalist parasitoid, and the silkworm Bombyx mori, its lepidopteran host, as models. We observed that E. japonica parasitoidism did not affect silkworm larval body weight gain and cocooning rate, whereas they caused shortened duration of molting from the final instar to the pupal stage, abnormal molting from larval to pupal stages, and a subsequent decrease in host emergence rate. Moreover, a decrease in juvenile hormone (JH) titer and an increase in 20-hydroxyecdysone (20E) titer in the hemolymph of parasitized silkworms occurred. The transcription of JH and 20E responsive genes was downregulated in mature parasitized hosts, but upregulated in parasitized prepupae while Fushi tarazu factor 1 (Ftz-f1), a nuclear receptor essential in larval ecdysis, showed dramatically reduced expression in parasitized hosts at both the mature and prepupal stages. Moreover, the transcriptional levels of BmFtz-f1 and its downstream target genes encoding cuticle proteins were downregulated in epidermis of parasitized hosts. Meanwhile, the content of trehalose was decreased in the hemolymph, while chitin content in the epidermis was increased in parasitized silkworm prepupae. These data reveal that the host may fine-tune JH and 20E synthesis to shorten developmental duration to combat established E. japonica infestation, while E. japonica silences BmFtz-f1 transcription to inhibit host pupation. This discovery highlights the novel target mechanism of tachinid parasitoids and provides new clues to host/tachinid parasitoid relationships.
Collapse
Affiliation(s)
- Min-Li Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Wen-Tao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | | | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Qing-Yu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Hai-Na Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
| | - Fan-Chi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
- *Correspondence: Jing Wei,
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
- Bing Li,
| |
Collapse
|