1
|
Wang L, Jiang Y, Zhao C. The effects of advanced glycation end-products on skin and potential anti-glycation strategies. Exp Dermatol 2024; 33:e15065. [PMID: 38563644 DOI: 10.1111/exd.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The advanced glycation end-products (AGEs) are produced through non-enzymatic glycation between reducing sugars and free amino groups, such as proteins, lipids or nucleic acids. AGEs can enter the body through daily dietary intake and can also be generated internally via normal metabolism and external stimuli. AGEs bind to cell surface receptors for AGEs, triggering oxidative stress and inflammation responses that lead to skin ageing and various diseases. Evidence shows that AGEs contribute to skin dysfunction and ageing. This review introduces the basic information, the sources, the metabolism and absorption of AGEs. We also summarise the detrimental mechanisms of AGEs to skin ageing and other chronic diseases. For the potential strategies for counteracting AGEs to skin and other organs, we summarised the pathways that could be utilised to resist glycation. Chemical and natural-derived anti-glycation approaches are overviewed. This work offers an understanding of AGEs to skin ageing and other chronic diseases and may provide perspectives for the development of anti-glycation strategies.
Collapse
Affiliation(s)
- Lingyu Wang
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| |
Collapse
|
2
|
Zhang X, Xie F, Ma S, Ma C, Jiang X, Yi Y, Song Y, Liu M, Zhao P, Ma X. Mitochondria: one of the vital hubs for molecular hydrogen's biological functions. Front Cell Dev Biol 2023; 11:1283820. [PMID: 38020926 PMCID: PMC10662307 DOI: 10.3389/fcell.2023.1283820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
As a novel antioxidant, a growing body of studies has documented the diverse biological effects of molecular hydrogen (H2) in a wide range of organisms, spanning animals, plants, and microorganisms. Although several possible mechanisms have been proposed, they cannot fully explain the extensive biological effects of H2. Mitochondria, known for ATP production, also play crucial roles in diverse cellular functions, including Ca2+ signaling, regulation of reactive oxygen species (ROS) generation, apoptosis, proliferation, and lipid transport, while their dysfunction is implicated in a broad spectrum of diseases, including cardiovascular disorders, neurodegenerative conditions, metabolic disorders, and cancer. This review aims to 1) summarize the experimental evidence on the impact of H2 on mitochondrial function; 2) provide an overview of the mitochondrial pathways underlying the biological effects of H2, and 3) discuss H2 metabolism in eukaryotic organisms and its relationship with mitochondria. Moreover, based on previous findings, this review proposes that H2 may regulate mitochondrial quality control through diverse pathways in response to varying degrees of mitochondrial damage. By combining the existing research evidence with an evolutionary perspective, this review emphasizes the potential hydrogenase activity in mitochondria of higher plants and animals. Finally, this review also addresses potential issues in the current mechanistic study and offers insights into future research directions, aiming to provide a reference for future studies on the mechanisms underlying the action of H2.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Shiwen Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Chen Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xue Jiang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Yang Yi
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Yifei Song
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| |
Collapse
|
3
|
Nazari SE, Tarnava A, Khalili-Tanha N, Darroudi M, Khalili-Tanha G, Avan A, Khazaei M, LeBaron TW. Therapeutic Potential of Hydrogen-Rich Water on Muscle Atrophy Caused by Immobilization in a Mouse Model. Pharmaceuticals (Basel) 2023; 16:1436. [PMID: 37895907 PMCID: PMC10609871 DOI: 10.3390/ph16101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle atrophy is associated with poor quality of life and disability. Thus, finding a new strategy for the prevention and treatment of skeletal muscle atrophy is very crucial. This study aimed to investigate the therapeutic potential of hydrogen-rich water (HRW) on muscle atrophy in a unilateral hind limb immobilization model. Thirty-six male Balb/C mice were divided into control (without immobilization), atrophy, and atrophy + hydrogen-rich water (HRW). Unilateral hind limb immobilization was induced using a splint for 7 days (atrophy) and removed for 10 days (recovery). At the end of each phase, gastrocnemius and soleus muscle weight, limb grip strength, skeletal muscle histopathology, muscle fiber size, cross-section area (CSA), serum troponin I and skeletal muscle IL-6, TNF-α and Malondialdehyde (MDA), and mRNA expression of NF-κB, BAX and Beclin-1 were evaluated. Muscle weight and limb grip strength in the H2-treated group were significantly improved during the atrophy phase, and this improvement continued during the recovery period. Treatment by HRW increased CSA and muscle fiber size and reduced muscle fibrosis, serum troponin I, IL-6, TNF-α and MDA which was more prominent in the atrophy phase. These data suggest that HRW could improve muscle atrophy in an immobilized condition and could be considered a new strategy during rehabilitation.
Collapse
Affiliation(s)
- Seyedeh Elnaz Nazari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | | | - Nima Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | - Mahdieh Darroudi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
| |
Collapse
|
4
|
Taskin S, Celik T, Demiryurek S, Turedi S, Taskin A. Effects of different-intensity exercise and creatine supplementation on mitochondrial biogenesis and redox status in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1009-1015. [PMID: 36159328 PMCID: PMC9464337 DOI: 10.22038/ijbms.2022.65047.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/16/2022] [Indexed: 11/07/2022]
Abstract
Objectives Dietary supplementation combined with exercise may potentiate the beneficial effects of exercise by reducing exercise-induced oxidative stress and improving mitochondrial quality and capacity. In this study, the effects of creatine monohydrate (CrM) supplementation with low and high-intensity exercise on mitochondrial biogenesis regulators, Nrf2 anti-oxidant signaling pathway and muscle damage levels were investigated. Materials and Methods Balb/c male mice were divided into six experimental groups: control, control+CrM, high-intensity exercise, high-intensity exercise+CrM, low-intensity exercise, and low-intensity exercise+CrM. Mice were given CrM supplementation and at the same time, low and high-intensity exercise was applied to the groups on the treadmill at 30min/5day/8week. Then, mitochondrial biogenesis marker (PGC-1α, NRF-1, TFAM), Nrf2 and HO-1 protein expressions, total oxidant-anti-oxidant status level, and histopathological changes were investigated in serum and muscle tissue. Results Exercise intensity and CrM supplementation were found to be effective factors in mitochondrial biogenesis induction via the PGC-1α signaling pathway. Nrf2 and HO-1 protein levels increased with exercise intensity, and this result was directly related to serum oxidative stress markers. In addition, CrM supplementation was effective in reducing exercise-induced muscle damage. Conclusion This combination induced skeletal muscle adaptations, including mitochondrial biogenesis and enhanced anti-oxidant reserves. This synergistic effect of dietary supplementation with low-intensity exercise may be valuable as a complement to treatment, especially in diseases caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Seyhan Taskin
- Department of Physiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Taskin Celik
- Department of Physiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Seniz Demiryurek
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Sibel Turedi
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Abdullah Taskin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Harran University, Sanliurfa, Turkey
| |
Collapse
|