1
|
Eilertsen M, Norland S, Dolan DWP, Karlsen R, Gomes AS, Bolton CM, Migaud H, Rønnestad I, Helvik JV. Onset of circadian rhythmicity in the brain of Atlantic salmon is linked to exogenous feeding. PLoS One 2024; 19:e0312911. [PMID: 39546447 DOI: 10.1371/journal.pone.0312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
An organism's biological processes are adapted to and driven by rhythmicity in the natural environment and periodicity of light is one of the most influential factors. In a developing organism, the onset of circadian rhythmicity might indicate the time point of functional necessity for aligning processes to the environment. Here, the circadian clock mechanism has been studied in the developing brain of Atlantic salmon (Salmo salar), by comparing the endogenous feeding alevin, independent on the environment for nutritional supply, to the exogenous feeding fry, dependent on the light period for detecting and catching prey. The results showed that while only a few clock genes were cyclic in the yolk sac alevins, many of the clock genes and genes of the circadian rhythm pathway cycled significantly in the feeding fry. Few genes were differentially expressed between time points in the circadian sampling series during the yolk sac stage, but several hundred genes were found differentially expressed in the first feeding stage. Genes important for cell cycle progression were cyclic or differentially expressed between time points after exogenous feeding, indicating a clock-controlled cell cycle at this stage. The expression of important genes in the melatonin synthesis were also cyclic in the feeding fry with an acrophase in the transition between light and dark or in darkness. Analyzing the impact of exogenous feeding on the developing brain supported a shift from utilization of proteins and lipids in the yolk to utilization and allocation of dietary energy and nutrients. Taken together, the life history transition related to onset of exogenous feeding is linked to the establishment of a persistent circadian rhythmicity in the salmon brain, which needs to be synchronized to light-dark cycles to enable the fry to search and capture feed.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sissel Norland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - David W P Dolan
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Rita Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Charlotte M Bolton
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Kwak JS, León-Tapia MÁ, Diblasi C, Manousi D, Grønvold L, Sandvik GK, Saitou M. Functional and regulatory diversification of Period genes responsible for circadian rhythm in vertebrates. G3 (BETHESDA, MD.) 2024; 14:jkae162. [PMID: 39028850 PMCID: PMC11457068 DOI: 10.1093/g3journal/jkae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
The Period genes (Per) play essential roles in modulating the molecular circadian clock timing in a broad range of species, which regulates the physiological and cellular rhythms through the transcription-translation feedback loop. While the Period gene paralogs are widely observed among vertebrates, the evolutionary history and the functional diversification of Per genes across vertebrates are not well known. In this study, we comprehensively investigated the evolution of Per genes at the copy number and sequence levels, including de novo binding motif discovery by comparative genomics. We also determined the lineage-specific transcriptome landscape across tissues and developmental stages and phenotypic effects in public RNA-seq data sets of model species. We observed multiple lineage-specific gain and loss events Per genes, though no simple association was observed between ecological factors and Per gene numbers in each species. Among salmonid fish species, the per3 gene has been lost in the majority, whereas those retaining the per3 gene exhibit not a signature of relaxed selective constraint but rather a signature of intensified selection. We also determined the signature of adaptive diversification of the CRY-binding region in Per1 and Per3, which modulates the circadian rhythm. We also discovered putative regulatory sequences, which are lineage-specific, suggesting that these cis-regulatory elements may have evolved rapidly and divergently across different lineages. Collectively, our findings revealed the evolution of Per genes and their fine-tuned contribution to the plastic and precise regulation of circadian rhythms in various vertebrate taxa.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - M Ángel León-Tapia
- Colección Nacional de Mamíferos, Pabellón Nacional de la Biodiversidad, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celian Diblasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Domniki Manousi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Guro Katrine Sandvik
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Marie Saitou
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
3
|
Saiz N, Herrera-Castillo L, Gómez-Boronat M, Delgado MJ, Isorna E, de Pedro N. Daily rhythms of REV-ERBα and its role as transcriptional repressor of clock genes in fish hepatic oscillator. Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111458. [PMID: 37290737 DOI: 10.1016/j.cbpa.2023.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
The REV-ERBα nuclear receptor is a key component of the molecular machinery of circadian oscillators in mammals. While the rhythmic expression of this receptor has been described in teleosts, several critical aspects of its regulation remain unknown, such as which synchronizers entrain its rhythm, and whether it can modulate the expression of other clock genes. The objective of this study was to gain deeper understanding of the role of REV-ERBα in the fish circadian system. To this end, we first investigated the cues that entrain the rhythm of rev-erbα expression in the goldfish (Carassius auratus) liver and hypothalamus. A 12-h shift in feeding time induced a parallel shift in the hepatic rhythm of rev-erbα expression, confirming that this gene is food-entrainable in the goldfish liver. In contrast, light seems the main driver of rev-erbα rhythmic expression in the hypothalamus. Next, we examined the effects of REV-ERBα activation on locomotor activity and hepatic expression of clock genes. Subchronic treatment with the REV-ERBα agonist SR9009 slightly decreased locomotor activity anticipating light onset and food arrival, and downregulated hepatic bmal1a, clock1a, cry1a, per1a and pparα expression. This generalized repressing action of REV-ERBα on the expression of hepatic clock genes was confirmed in vitro by using agonists (SR9009 and GSK4112) and antagonist (SR8278) of this receptor. Overall, the present work reveals that REV-ERBα modulates the daily expression of the main genes of the teleostean liver clock, reinforcing its role in the liver temporal homeostasis, which seems highly conserved in both fish and mammals.
Collapse
Affiliation(s)
- Nuria Saiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Lisbeth Herrera-Castillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Miguel Gómez-Boronat
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - María Jesús Delgado
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Nuria de Pedro
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain.
| |
Collapse
|
4
|
Cheng CHC, Rivera-Colón AG, Minhas BF, Wilson L, Rayamajhi N, Vargas-Chacoff L, Catchen JM. Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus-The Closest Ancestral Proxy of Antarctic Cryonotothenioids. Genes (Basel) 2023; 14:1196. [PMID: 37372376 DOI: 10.3390/genes14061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The basal South American notothenioid Eleginops maclovinus (Patagonia blennie or róbalo) occupies a uniquely important phylogenetic position in Notothenioidei as the singular closest sister species to the Antarctic cryonotothenioid fishes. Its genome and the traits encoded therein would be the nearest representatives of the temperate ancestor from which the Antarctic clade arose, providing an ancestral reference for deducing polar derived changes. In this study, we generated a gene- and chromosome-complete assembly of the E. maclovinus genome using long read sequencing and HiC scaffolding. We compared its genome architecture with the more basally divergent Cottoperca gobio and the derived genomes of nine cryonotothenioids representing all five Antarctic families. We also reconstructed a notothenioid phylogeny using 2918 proteins of single-copy orthologous genes from these genomes that reaffirmed E. maclovinus' phylogenetic position. We additionally curated E. maclovinus' repertoire of circadian rhythm genes, ascertained their functionality by transcriptome sequencing, and compared its pattern of gene retention with C. gobio and the derived cryonotothenioids. Through reconstructing circadian gene trees, we also assessed the potential role of the retained genes in cryonotothenioids by referencing to the functions of the human orthologs. Our results found E. maclovinus to share greater conservation with the Antarctic clade, solidifying its evolutionary status as the direct sister and best suited ancestral proxy of cryonotothenioids. The high-quality genome of E. maclovinus will facilitate inquiries into cold derived traits in temperate to polar evolution, and conversely on the paths of readaptation to non-freezing habitats in various secondarily temperate cryonotothenioids through comparative genomic analyses.
Collapse
Affiliation(s)
- Chi-Hing Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Bushra Fazal Minhas
- Informatics Program, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Loralee Wilson
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Niraj Rayamajhi
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Luis Vargas-Chacoff
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Julian M Catchen
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
5
|
Eilertsen M, Dolan DWP, Bolton CM, Karlsen R, Davies WIL, Edvardsen RB, Furmanek T, Sveier H, Migaud H, Helvik JV. Photoreception and transcriptomic response to light during early development of a teleost with a life cycle tightly controlled by seasonal changes in photoperiod. PLoS Genet 2022; 18:e1010529. [PMID: 36508414 PMCID: PMC9744326 DOI: 10.1371/journal.pgen.1010529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Light cues vary along the axis of periodicity, intensity and spectrum and perception of light is dependent on the photoreceptive capacity encoded within the genome and the opsins expressed. A global approach was taken to analyze the photoreceptive capacity and the effect of differing light conditions on a developing teleost prior to first feeding. The transcriptomes of embryos and alevins of Atlantic salmon (Salmo salar) exposed to different light conditions were analyzed, including a developmental series and a circadian profile. The results showed that genes mediating nonvisual photoreception are present prior to hatching when the retina is poorly differentiated. The clock genes were expressed early, but the circadian profile showed that only two clock genes were significantly cycling before first feeding. Few genes were differentially expressed between day and night within a light condition; however, many genes were significantly different between light conditions, indicating that light environment has an impact on the transcriptome during early development. Comparing the transcriptome data from constant conditions to periodicity of white light or different colors revealed overrepresentation of genes related to photoreception, eye development, muscle contraction, degradation of metabolites and cell cycle among others, and in constant light, several clock genes were upregulated. In constant white light and periodicity of green light, genes associated with DNA replication, chromatin remodeling, cell division and DNA repair were downregulated. The study implies a direct influence of light conditions on the transcriptome profile at early developmental stages, by a complex photoreceptive system where few clock genes are cycling.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail: (ME); (JVH)
| | | | - Charlotte M. Bolton
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Rita Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Wayne I. L. Davies
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | | | | | | | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail: (ME); (JVH)
| |
Collapse
|
6
|
Gómez-Boronat M, De Pedro N, Alonso-Gómez ÁL, Delgado MJ, Isorna E. Nuclear Receptors (PPARs, REV-ERBs, RORs) and Clock Gene Rhythms in Goldfish (Carassius auratus) Are Differently Regulated in Hypothalamus and Liver. Front Physiol 2022; 13:903799. [PMID: 35733989 PMCID: PMC9207440 DOI: 10.3389/fphys.2022.903799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 01/03/2023] Open
Abstract
The circadian system is formed by a network of oscillators located in central and peripheral tissues that are tightly linked to generate rhythms in vertebrates to adapt the organism to the cyclic environmental changes. The nuclear receptors PPARs, REV-ERBs and RORs are transcription factors controlled by the circadian system that regulate, among others, a large number of genes that control metabolic processes for which they have been proposed as key genes that link metabolism and temporal homeostasis. To date it is unclear whether these nuclear receptors show circadian expression and which zeitgebers are important for their synchronization in fish. Therefore, the objective of this study was to investigate whether the two main zeitgebers (light-dark cycle and feeding time) could affect the synchronization of central (hypothalamus) and peripheral (liver) core clocks and nuclear receptors in goldfish. To this aim, three experimental groups were established: fish under a 12 h light-12 h darkness and fed at Zeitgeber Time 2; fish with the same photoperiod but randomly fed; and fish under constant darkness and fed at Circadian Time 2. After one month, clock genes and nuclear receptors expression in hypothalamus and liver and circulating glucose were studied. Clock genes displayed daily rhythms in both tissues of goldfish if the light-dark cycle was present, with shifted-acrophases of negative and positive elements, as expected for proper functioning clocks. In darkness-maintained fish hypothalamic clock genes were fully arrhythmic while the hepatic ones were still rhythmic. Among studied nuclear receptors, in the hypothalamus only nr1d1 was rhythmic and only when the light-dark cycle was present. In the liver all nuclear receptors were rhythmic when both zeitgebers were present, but only nr1d1 when one of them was removed. Plasma glucose levels showed significant rhythms in fish maintained under random fed regimen or constant darkness, with the highest levels at 1-h postprandially in all groups. Altogether these results support that hypothalamus is mainly a light-entrained-oscillator, while the liver is a food-entrained-oscillator. Moreover, nuclear receptors are revealed as clear outputs of the circadian system acting as key elements in the timekeeping of temporal homeostasis, particularly in the liver.
Collapse
|