1
|
Kosch Y, Mülling C, Emmerich IU. Resistance of Varroa destructor against Oxalic Acid Treatment-A Systematic Review. Vet Sci 2024; 11:393. [PMID: 39330772 PMCID: PMC11436189 DOI: 10.3390/vetsci11090393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
As Varroa destructor is one of the most important pathogens of Apis mellifera, there are numerous treatment methods, including pharmaceutical and biotechnological approaches. However, the rapid development of resistance to synthetic acaricides by Varroa destructor has become a significant concern. To date, there have been no investigations into the development of resistance to organic acids. This review examines the potential risk of oxalic acid resistance development by evaluating literature sources from the past 30 years following the PRISMA 2020 guidelines. Median annual efficacies are calculated and reviewed over time for several application methods. An efficacy higher than 70% is determined as not resistant. Independent of the method of application, no resistance development can be observed, although there are some outliers of the annual median. These outliers can be explained by brood status or study setting. However, the result is limited by the low number of efficacy values, and further standardised studies are needed.
Collapse
Affiliation(s)
- Yvonne Kosch
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Christoph Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Ilka U Emmerich
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Stevanović J, Glavinić U, Ristanić M, Erjavec V, Denk B, Dolašević S, Stanimirović Z. Bee-Inspired Healing: Apitherapy in Veterinary Medicine for Maintenance and Improvement Animal Health and Well-Being. Pharmaceuticals (Basel) 2024; 17:1050. [PMID: 39204155 PMCID: PMC11357515 DOI: 10.3390/ph17081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
This review aims to present current knowledge on the effects of honey bee products on animals based on in vivo studies, focusing on their application in clinical veterinary practice. Honey's best-proven effectiveness is in treating wounds, including those infected with antibiotic-resistant microorganisms, as evidenced in horses, cats, dogs, mice, and rats. Propolis manifested a healing effect in numerous inflammatory and painful conditions in mice, rats, dogs, and pigs and also helped in oncological cases in mice and rats. Bee venom is best known for its effectiveness in treating neuropathy and arthritis, as shown in dogs, mice, and rats. Besides, bee venom improved reproductive performance, immune response, and general health in rabbits, chickens, and pigs. Pollen was effective in stimulating growth and improving intestinal microflora in chickens. Royal jelly might be used in the management of animal reproduction due to its efficiency in improving fertility, as shown in rats, rabbits, and mice. Drone larvae are primarily valued for their androgenic effects and stimulation of reproductive function, as evidenced in sheep, chickens, pigs, and rats. Further research is warranted to determine the dose and method of application of honey bee products in animals.
Collapse
Affiliation(s)
- Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Vladimira Erjavec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Barış Denk
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03204, Turkey;
| | | | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| |
Collapse
|
3
|
Rein C, Blumenschein M, Traynor K, Rosenkranz P. Lithium chloride treatments in free flying honey bee colonies: efficacy, brood survival, and within-colony distribution. Parasitol Res 2023; 123:67. [PMID: 38133834 PMCID: PMC10746590 DOI: 10.1007/s00436-023-08084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The efficacy of various lithium chloride (LiCl) applications in eradicating the parasitic mite Varroa destructor in honey bee colonies was investigated, with a specific focus on its impact on brood development. In broodless colonies (3 weeks post queen caging), the highest efficacy of 98% was achieved with a 9-day treatment of 2.5 kg of candy spiked with 50 mM LiCl. A shorter 5-day treatment with 2 kg of 50 mM LiCl candy resulted in an efficacy of 78%. In colonies with brood, a repeated short-term application of 4 × 0.5 kg 50 mM LiCl candy yielded an efficacy of 88%. LiCl treatment led to a removal of the first batch of brood reared after release of the queen. However, no long-term effects on colony growth were observed, and the colonies successfully overwintered. Additionally, the study demonstrated that lithium is rapidly distributed among the bees of a colony within 2 days, yet only low concentrations were detected in stored food samples. This suggests that the bees efficiently absorb and distribute lithium within the colony. The harvested honey in the following spring revealed a lithium concentration of 0.1-0.2 mg/kg, which is below naturally occurring lithium levels in honey. Based on these findings, LiCl can be considered an effective and easy-to-apply acaricide in broodless colonies, and even in colonies with brood, it had good efficacy and no long-term effects on colony survival. Further research may be necessary to determine the optimal treatment period for achieving an efficacy over 95%.
Collapse
Affiliation(s)
- Carolin Rein
- State Institute of Bee Research, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Marius Blumenschein
- State Institute of Bee Research, University of Hohenheim, 70599, Stuttgart, Germany
| | - Kirsten Traynor
- State Institute of Bee Research, University of Hohenheim, 70599, Stuttgart, Germany
| | - Peter Rosenkranz
- State Institute of Bee Research, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
4
|
Jovanovic NM, Glavinic U, Ristanic M, Vejnovic B, Ilic T, Stevanovic J, Stanimirovic Z. Effects of Plant-Based Supplement on Oxidative Stress of Honey Bees ( Apis mellifera) Infected with Nosema ceranae. Animals (Basel) 2023; 13:3543. [PMID: 38003159 PMCID: PMC10668651 DOI: 10.3390/ani13223543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most important approaches in the prevention and treatment of nosemosis is the use of herbal preparations as food supplements for bees. Therefore, the aim of this study was to investigate the effects of a plant-based supplement branded as "B+" on honeybees in a laboratory experiment. Four experimental groups were established: treated group (T), N. ceranae-infected and treated group (IT), N. ceranae-infected group (I) and non-infected group (NI). Survival, N. ceranae spore load and oxidative stress parameters together with expression levels of antioxidant enzyme genes and vitellogenin gene were monitored. The mortality in the T, IT and NI groups was significantly (p < 0.001) lower than in than in the I group. Within Nosema-infected groups, the IT group had a significantly lower (p < 0.001) number of N. ceranae spores than the I group. In addition, expression levels of genes for antioxidant enzymes were lower (p < 0.001) in the IT group compared to the I group. The concentration of malondialdehyde and the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione S-transferase) were significantly lower (p < 0.001) in the IT group compared to the I group. No negative effects of the tested supplement were observed. All these findings indicate that the tested supplement exerted beneficial effects manifested in better bee survival, reduced N. ceranae spore number and reduced oxidative stress of bees (lower expression of genes for antioxidant enzymes and oxidative stress parameters).
Collapse
Affiliation(s)
- Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Tamara Ilic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| |
Collapse
|
5
|
Erdem B, Arslan OC, Sevin S, Gozen AG, Agosto-Rivera JL, Giray T, Alemdar H. Effects of lithium on locomotor activity and circadian rhythm of honey bees. Sci Rep 2023; 13:19861. [PMID: 37963948 PMCID: PMC10646147 DOI: 10.1038/s41598-023-46777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
Lithium has been considered a potential acaricidal agent against the honey bee (Apis mellifera) parasite Varroa. It is known that lithium suppresses elevated activity and regulates circadian rhythms and light response when administered to humans as a primary therapeutic chemical for bipolar disorder and to other bipolar syndrome model organisms, given the crucial role of timing in the bee's foraging activity and the alternating sunlight vs dark colony environment bees are exposed, we explored the influence of lithium on locomotor activity (LMA) and circadian rhythm of honey bees. We conducted acute and chronic lithium administration experiments, altering light conditions and lithium doses to assess LMA and circadian rhythm changes. We fed bees one time 10 μl sucrose solution with 0, 50, 150, and 450 mM LiCl in the acute application experiment and 0, 1, 5, and 10 mmol/kg LiCl ad libitum in bee candy in the chronic application experiment. Both acute and chronic lithium treatments significantly decreased the induced LMA under constant light. Chronic lithium treatment disrupted circadian rhythmicity in constant darkness. The circadian period was lengthened by lithium treatment under constant light. We discuss the results in the context of Varroa control and lithium's effect on bipolar disorder.
Collapse
Affiliation(s)
- Babur Erdem
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
- Center for Robotics and Artificial Intelligence (ROMER), Middle East Technical University, Ankara, Turkey.
| | - Okan Can Arslan
- Center for Robotics and Artificial Intelligence (ROMER), Middle East Technical University, Ankara, Turkey
| | - Sedat Sevin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Ayse Gul Gozen
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Tugrul Giray
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Hande Alemdar
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
6
|
Glavinić U, Rajković M, Ristanić M, Stevanović J, Vejnović B, Djelić N, Stanimirović Z. Genotoxic Potential of Thymol on Honey Bee DNA in the Comet Assay. INSECTS 2023; 14:insects14050451. [PMID: 37233079 DOI: 10.3390/insects14050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Thymol is a natural essential oil derived from the plant Thymus vulgaris L. It is known to be beneficial for human and animal health and has been used in beekeeping practice against Varroa mite for years. In this study, the genotoxic and antigenotoxic potential of thymol were evaluated on the honey bee (Apis mellifera L.) continuous cell line AmE-711 for the first time. Using the Comet assay, three increasing concentrations (10, 100, and 1000 µg/mL) of thymol were tested. Negative control (non-treated cells) and positive control (cells treated with 100 µM H2O2) were also included. The absence of thymol cytotoxicity was confirmed with the Trypan blue exclusion test. Thymol in the concentration of 10 µg/mL did not increase DNA damage in AmE-711 honey bee cells, while 100 and 1000 µg/mL concentrations showed genotoxic effects. For testing the antigenotoxic effect, all concentrations of thymol were mixed and incubated with H2O2. The antigenotoxic effect against was absent at all concentrations (10, 100, 1000 μg/mL) tested. Moreover, thymol enhanced the H2O2-induced DNA migration in the Comet assay. The obtained results indicate genotoxic effects of thymol on cultured honey bee cells suggesting its careful application in beekeeping practice to avoid possible negative effects on honey bees.
Collapse
Affiliation(s)
- Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Rajković
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Branislav Vejnović
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ninoslav Djelić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|