1
|
Ouazzani HEL, Zouaidia F, Cherradi N, Karkouri M. Histopathological analysis of gamma sarcoglycanopathy in Moroccan patients: A case series. Int J Surg Case Rep 2024; 126:110733. [PMID: 39709673 DOI: 10.1016/j.ijscr.2024.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
INTRODUCTION AND IMPORTANCE In Morocco, diagnosing Gamma Sarcoglycanopathies mainly relies on histopathological analysis of muscle biopsies due to limited genetic and molecular research access. This study highlights the significance of muscle biopsies and explores potential predictive factors and possible correlation between histopathological abnormalities and clinical phenotypes. CASE PRESENTATION Muscle biopsies of six patients diagnosed with γ-sarcoglycanopathy were collected over two years. Pathological analysis was initially performed on slides stained with Hematoxylin-Eosin and Gomori Trichrome. Additionally, cryosections marked for dystrophin, alpha, beta, and gamma sarcoglycans were reviewed. In the second phase of the analysis, formalin-fixed sections from each biopsy were immunostained for various markers: "anti-CD68" for macrophagic cells, "anti-CD56" for satellite cells, and "anti-CD31" for vascular capillary. These stained sections were then carefully examined. CLINICAL DISCUSSION The clinical presentation of the disease was uniform and consistent with Duchenne-like dystrophy. However, the histological abnormalities were heterogeneous and did not correlate with the severity of the clinical phenotype. The Loss of expression of a Sarcoglycan and earlier age of onset appear to be the most significant predictive markers of disease progression. Immuno-staining patterns for CD68, CD56, and CD31 indicated an impairment in the muscle regeneration process, probably, at an early stage of the disease. CONCLUSION This study's findings are crucial for understanding pathogenesis and identifying new therapeutic targets. However, because of the small sample size, further confirmation through a larger cohort is necessary.
Collapse
Affiliation(s)
- Hafsa E L Ouazzani
- Department of Pathology HSR, Ibn Sina University Hospital Center, Rabat, Morocco; Mohammed V University in Rabat, Morocco.
| | - Fouad Zouaidia
- Department of Pathology Ibn Sina, Ibn Sina University Hospital Center, Rabat, Morocco; Mohammed V University in Rabat, Morocco
| | - Nadia Cherradi
- Department of Pathology HSR, Ibn Sina University Hospital Center, Rabat, Morocco; Mohammed V University in Rabat, Morocco
| | - Mahdi Karkouri
- Department of Pathology of Ibn Roched University Hospital Center, Casablanca, Morocco; Hassan II University in Casablanca, Morocco
| |
Collapse
|
2
|
Li WZ, Xiong Y, Wang TK, Chen YY, Wan SL, Li LY, Xu M, Tong JJ, Qian Q, Jiang CQ, Liu WC. Quantitative proteomics analysis reveals the pathogenesis of obstructed defecation syndrome caused by abnormal expression of dystrophin. World J Gastroenterol 2024; 30:4817-4835. [PMID: 39649544 PMCID: PMC11606370 DOI: 10.3748/wjg.v30.i45.4817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 11/13/2024] Open
Abstract
BACKGROUND Obstructed defecation syndrome (ODS) represents the most prevalent form of chronic constipation, affecting a diverse patient population, leading to numerous complications, and imposing a significant burden on healthcare resources. Most ODS patients have insufficient rectal propulsion, but the exact mechanism underlying the pathogenesis of ODS remains unclear. AIM To explore the molecular mechanism underlying the pathogenesis of ODS. METHODS A total of 30 pairs of rectal samples were collected from patients with ODS (ODS group) or grade IV prolapsed hemorrhoids without constipation (control group) for quantitative proteomic and bioinformatic analysis. Subsequently, 50 pairs of paraffin-embedded rectal specimens were selected for immunohistochemistry and immunofluorescence studies to validate the analysis results. Human intestinal smooth cell contractile function experiments and electrophysiological experiments were conducted to verify the physiological functions of target proteins. Cellular ultrastructure was detected using transmission electron microscopy. RESULTS In comparison to the control group, the expression level of dystrophin (DMD) in rectal specimens from ODS patients was markedly reduced. This finding was corroborated using immunohistochemistry and immunofluorescence techniques. The diminished expression of DMD compromised the contractile function of intestinal smooth muscle cells. At the molecular level, nucleoporin protein 153 and L-type voltage-gated calcium channel were found to be overexpressed in intestinal smooth muscle cells exhibiting downregulated DMD expression. Electrophysiological experiments confirmed an excessive influx of calcium ions into these cells. Moreover, vacuolar-like structures which may be associated with excessive calcium influx were observed in the cells by transmission electron microscopy. CONCLUSION Decreased DMD expression in intestinal smooth muscle may upregulate L-type voltage-gated calcium channel expression, leading to excessive calcium influx which may cause a decrease in rectal propulsion, thereby contributing to the pathogenesis of ODS.
Collapse
Affiliation(s)
- Wen-Zhe Li
- Department of Colorectal and Anal Surgery (Clinical Center for Pelvic Floor Surgery), Clinical Center of Constipation and Pelvic Floor Disease of Wuhan, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yu Xiong
- Department of Radiation and Medical Oncology for Esophageal Mediastinal and Lymphatic Tumors, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Tian-Kun Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yan-Yan Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Song-Lin Wan
- Department of Colorectal and Anal Surgery (Clinical Center for Pelvic Floor Surgery), Clinical Center of Constipation and Pelvic Floor Disease of Wuhan, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Lu-Yao Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Meng Xu
- School of Life Sciences, Central China Normal University, Wuhan 430071, Hubei Province, China
| | - Jing-Jing Tong
- School of Life Sciences, Central China Normal University, Wuhan 430071, Hubei Province, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery (Clinical Center for Pelvic Floor Surgery), Clinical Center of Constipation and Pelvic Floor Disease of Wuhan, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Cong-Qing Jiang
- Department of Colorectal and Anal Surgery (Clinical Center for Pelvic Floor Surgery), Clinical Center of Constipation and Pelvic Floor Disease of Wuhan, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Wei-Cheng Liu
- Department of Colorectal and Anal Surgery (Clinical Center for Pelvic Floor Surgery), Clinical Center of Constipation and Pelvic Floor Disease of Wuhan, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
3
|
Hurley-Novatny A, Chang D, Murakami K, Wang L, Li H. Poor bone health in Duchenne muscular dystrophy: a multifactorial problem beyond corticosteroids and loss of ambulation. Front Endocrinol (Lausanne) 2024; 15:1398050. [PMID: 39669499 PMCID: PMC11634624 DOI: 10.3389/fendo.2024.1398050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive, fatal muscle wasting disease caused by X-linked mutations in the dystrophin gene. Alongside the characteristic muscle weakness, patients face a myriad of skeletal complications, including osteoporosis/osteopenia, high susceptibility to vertebral and long bone fractures, fat embolism post-fracture, scoliosis, and growth retardation. Those skeletal abnormalities significantly compromise quality of life and are sometimes life-threatening. These issues were traditionally attributed to loss of ambulation and chronic corticosteroid use, but recent investigations have unveiled a more intricate etiology. Factors such as vitamin D deficiency, hormonal imbalances, systemic inflammation, myokine release from dystrophic muscle, and vascular dysfunction are emerging as significant contributors as well. This expanded understanding illuminates the multifaceted pathogenesis underlying skeletal issues in DMD. Present therapeutic options are limited and lack specificity. Advancements in understanding the pathophysiology of bone complications in DMD will offer promising avenues for novel treatment modalities. In this review, we summarize the current understanding of factors contributing to bone problems in DMD and delineate contemporary and prospective multidisciplinary therapeutic approaches.
Collapse
Affiliation(s)
- Amelia Hurley-Novatny
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - David Chang
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Katsuhiro Murakami
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Ling Wang
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Hongshuai Li
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Zhao Y, Geng J, Meng Z, Sun Y, Ou M, Xu L, Li M, Gan G, Rui M, Han J, Xie W. Neurexin facilitates glycosylation of Dystroglycan to sustain muscle architecture and function in Drosophila. Commun Biol 2024; 7:1481. [PMID: 39521920 PMCID: PMC11550397 DOI: 10.1038/s42003-024-07191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Neurexin, a molecule associated with autism spectrum disorders, is thought to function mainly in neurons. Recently, it was reported that Neurexin is also present in muscle, but the role of Neurexin in muscle is still poorly understood. Here, we demonstrate that the overexpression of Neurexin in muscles effectively restored the locomotor function of Drosophila neurexin mutants, while rescuing effects are observed within the nervous. Notably, the defects in muscle structure and function caused by Neurexin deficiency were similar to those caused by mutations in dystroglycan, a gene associated with progressive muscular dystrophy. The absence of Neurexin leads to muscle attachment defects, emphasizing the essential role of Neurexin in muscle integrity. Furthermore, Neurexin deficiency reduces Dystroglycan glycosylation on the cell surface, which is crucial for maintaining proper muscle structure and function. Finally, Neurexin guides Dystroglycan to the glycosyltransferase complex through interactions with Rotated Abdomen, a homolog of mammalian POMT1. Our findings reveal that Neurexin mediates muscle development and function through Dystroglycan glycosylation, suggesting a potential association between autism spectrum disorders and muscular dystrophy.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Junhua Geng
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
| | - Zhu Meng
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Yichen Sun
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Mengzhu Ou
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Lizhong Xu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Moyi Li
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Guangming Gan
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
- Key Laboratory of Developmental Genes and Human Disease, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Menglong Rui
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Junhai Han
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
5
|
Wang F, Lyu XY, Qin YM, Xie MJ. Relationships between systemic sclerosis and atherosclerosis: screening for mitochondria-related biomarkers. Front Genet 2024; 15:1375331. [PMID: 39050259 PMCID: PMC11266065 DOI: 10.3389/fgene.2024.1375331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024] Open
Abstract
Background Patients with systemic sclerosis (SSc) are known to have higher incidence of atherosclerosis (AS). Mitochondrial injuries in SSc can cause endothelial dysfunction, leading to AS; thus, mitochondria appear to be hubs linking SSc to AS. This study aimed to identify the mitochondria-related biomarkers of SSc and AS. Methods We identified common differentially expressed genes (DEGs) in the SSc (GSE58095) and AS (GSE100927) datasets of the Gene Expression Omnibus (GEO) database. Considering the intersection between genes with identical expression trends and mitochondrial genes, we used the least absolute shrinkage and selection operator (LASSO) as well as random forest (RF) algorithms to identify four mitochondria-related hub genes. Diagnostic nomograms were then constructed to predict the likelihood of SSc and AS. Next, we used the CIBERSORT algorithm to evaluate immune infiltration in both disorders, predicted the transcription factors for the hub genes, and validated these genes for the two datasets. Results A total of 112 genes and 13 mitochondria-related genes were identified; these genes were then significantly enriched for macrophage differentiation, collagen-containing extracellular matrix, collagen binding, antigen processing and presentation, leukocyte transendothelial migration, and apoptosis. Four mitochondria-related hub DEGs (IFI6, FSCN1, GAL, and SGCA) were also identified. The nomograms showed good diagnostic values for GSE58095 (area under the curve (AUC) = 0.903) and GSE100927 (AUC = 0.904). Further, memory B cells, γδT cells, M0 macrophages, and activated mast cells were significantly higher in AS, while the resting memory CD4+ T cells were lower and M1 macrophages were higher in SSc; all of these were closely linked to multiple immune cells. Gene set enrichment analysis (GSEA) showed that IFI6 and FSCN1 were involved in immune-related pathways in both AS and SSc; GAL and SGCA are related to mitochondrial metabolism pathways in both SSc and AS. Twenty transcription factors (TFs) were predicted, where two TFs, namely BRCA1 and PPARγ, were highly expressed in both SSc and AS. Conclusion Four mitochondria-related biomarkers were identified in both SSc and AS, which have high diagnostic value and are associated with immune cell infiltration in both disorders. Hence, this study provides new insights into the pathological mechanisms underlying SSc and AS. The specific roles and action mechanisms of these genes require further clinical validation in SSc patients with AS.
Collapse
Affiliation(s)
- Fei Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Yan Lyu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Ming Qin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Juan Xie
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Gharibi S, Vaillend C, Lindsay A. The unconditioned fear response in vertebrates deficient in dystrophin. Prog Neurobiol 2024; 235:102590. [PMID: 38484964 DOI: 10.1016/j.pneurobio.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay 91400, France.
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| |
Collapse
|
7
|
Preethy S, Yamamoto N, Ozasa S, Raghavan K, Dedeepiya VD, Iwasaki M, Abraham SJK. Re-examination of therapeutic management of muscular dystrophies using a vascular smooth muscle-centered approach. J Smooth Muscle Res 2023; 59:67-80. [PMID: 37673649 PMCID: PMC10482562 DOI: 10.1540/jsmr.59.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/22/2023] [Indexed: 09/08/2023] Open
Abstract
In contrast to the long-standing focus on the pathophysiology of skeletal muscles in the hunt for a cure for Duchenne muscular dystrophy (DMD), we opine that the malfunctioning of dystrophin produced by vascular smooth muscle is a major contributor to the pathology of the illness. We believe that a biological response modifier glucan (BRMG), which has been shown in clinical studies of DMD to boost the expression of vascular smooth muscle dystrophin and provide anti-fibrotic and anti-inflammatory effects, may play a key role in reducing the pathogenesis of DMD. According to the evaluation of biomarkers, this BRMG, which is safe and side-effect-free, reduces the pathogenesis of DMD. We describe the possible mechanisms of action by which this BRMG helps in alleviating the symptoms of DMD by targeting smooth muscle dystrophin, in addition to its advantages over other therapeutic modalities, as well as how it can serve as a valuable adjunct to existing therapies. We suggest that using BRMG adjuncts that target smooth muscle dystrophin would be a potential therapeutic approach that prolongs the lifespan and extends the duration of ambulation from the onset of DMD. Further studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Senthilkumar Preethy
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for
Regenerative Medicine (NCRM), B-34, LICET, Loyola College, Nungambakkam, Chennai 600034,
India
| | - Naoki Yamamoto
- Genome Medical Sciences Project, National Center for Global
Health and Medicine (NCGM), 1 Chome-7-1 Kounodai, Ichikawa-shi, Chiba 272-8516,
Japan
| | - Shiro Ozasa
- Department of Pediatrics, Kumamoto University Hospital, 1
Chome-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kadalraja Raghavan
- Department of Paediatric Neurology, Jesuit Antonyraj Memorial
Inter-disciplinary Centre for Advanced Recovery and Education (JAICARE), Mandela Nagar,
Madurai, Tamil Nadu 625022, India
- Department of Paediatric Neurology, Sarvee Integra Private
Limited, 61 Bhimasena Garden Street, Mylapore, Chennai 600004, India
| | - Vidyasagar Devaprasad Dedeepiya
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for
Regenerative Medicine (NCRM), C-30 LICET, Loyola College, Nungambakkam, Chennai 600034,
Chennai, India
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), School of
Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Samuel JK Abraham
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for
Regenerative Medicine (NCRM), B-34, LICET, Loyola College, Nungambakkam, Chennai 600034,
India
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for
Regenerative Medicine (NCRM), C-30 LICET, Loyola College, Nungambakkam, Chennai 600034,
Chennai, India
- Centre for Advancing Clinical Research (CACR), School of
Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
- Antony-Xavier Interdisciplinary Scholastics (AXIS), GN
Corporation Co. Ltd., 3-8 Wakamatsu, Kofu, Yamanashi 400-0866, Japan
- R & D, Sophy Inc., 248 Tamura, Niyodogawa, Agawa, Kochi
781-1522, Japan
| |
Collapse
|