1
|
Wu C, Shi L, Deng Y, Chen H, Lu Y, Xiong X, Yin X. Bufalin Regulates STAT3 Signaling Pathway to Inhibit Corneal Neovascularization and Fibrosis After Alkali Burn in Rats. Curr Eye Res 2024:1-9. [PMID: 39356002 DOI: 10.1080/02713683.2024.2408392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE Bufalin (BU) is a bioactive ingredient extracted from the skin and parotid venom glands of Bufo raddei, which can effectively inhibit angiogenesis. The aim of this study was to investigate whether BU could affect corneal neovascularization (CoNV). METHODS A rat CoNV model (right eye) was constructed by administration of NaOH, and the left eye served as a control. Corneal damage scores of rats were detected. Hematoxylin & eosin, TUNEL, and Masson staining examined pathological changes, apoptosis, and fibrosis of corneal tissues. Immunohistochemistry and western blotting assessed the expression of proteins. RESULTS BU intervention resulted in a significant reduction in corneal inflammatory cells, repair of corneal epithelial hyperplasia, significant reduction in stromal edema, and reduction in vascular proliferation. BU can inhibit corneal neovascularization. CONCLUSION This study demonstrated that BU inhibits CoNV, fibrosis, and inflammation by modulating the STAT3 signaling pathway, elucidating the intrinsic mechanism of its protective effect. BU has great potential in the treatment of CoNV caused by corneal alkali burns.
Collapse
Affiliation(s)
- Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lu Shi
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yan Deng
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Ying Lu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoyan Xiong
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaolong Yin
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Yoon SB, Chen L, Robinson IE, Khatib TO, Arthur RA, Claussen H, Zohbi NM, Wu H, Mouw JK, Marcus AI. Subpopulation commensalism promotes Rac1-dependent invasion of single cells via laminin-332. J Cell Biol 2024; 223:e202308080. [PMID: 38551497 PMCID: PMC10982113 DOI: 10.1083/jcb.202308080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Phenotypic heterogeneity poses a significant hurdle for cancer treatment but is under-characterized in the context of tumor invasion. Amidst the range of phenotypic heterogeneity across solid tumor types, collectively invading cells and single cells have been extensively characterized as independent modes of invasion, but their intercellular interactions have rarely been explored. Here, we isolated collectively invading cells and single cells from the heterogeneous 4T1 cell line and observed extensive transcriptional and epigenetic diversity across these subpopulations. By integrating these datasets, we identified laminin-332 as a protein complex exclusively secreted by collectively invading cells. Live-cell imaging revealed that laminin-332 derived from collectively invading cells increased the velocity and directionality of single cells. Despite collectively invading and single cells having similar expression of the integrin α6β4 dimer, single cells demonstrated higher Rac1 activation upon laminin-332 binding to integrin α6β4. This mechanism suggests a novel commensal relationship between collectively invading and single cells, wherein collectively invading cells promote the invasive potential of single cells through a laminin-332/Rac1 axis.
Collapse
Affiliation(s)
- Sung Bo Yoon
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Luxiao Chen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Isaac E. Robinson
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tala O. Khatib
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Najdat M. Zohbi
- Graduate Medical Education, Piedmont Macon Medical, Macon, GA, USA
| | - Hao Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Janna K. Mouw
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Li L, Zhang X, Chen Y. Human Umbilical Cord Mesenchymal Stem Cell Exosome-derived miR-335-5p Alleviated Lipopolysaccharide-induced Acute Lung Injury by Regulating the m6A Level of ITGβ4 Gene. Curr Med Chem 2024; 31:5448-5467. [PMID: 38310394 DOI: 10.2174/0109298673273833231220062213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious complication that may accompany severe pneumonia in children. Derived from human umbilical cord mesenchymal stem cell exosome (HucMSC-Exo) can contribute to the regeneration of damaged lung tissue. This study aims to investigate the impact of HucMSC-Exo on ALI and its potential mechanisms. METHODS Firstly, RT-qPCR was performed to assess the expression of miR-335-5p. Subsequently, Pearson correlation analysis was performed to examine the correlation between METTL14 and miR-335-5p, as well as the correlation between METTL14 and ITGβ4, while RNA immunoprecipitation (RIP) was used to determine the m6A modification level of ITGβ4. Additionally, molecular biology techniques were employed to evaluate the expression of glycolysis-related factors. Definitively, an LPS-induced ALI model was established to investigate the effect of miR-335-5p on mice lung tissue. RESULTS miR-335-5p was found to be highly expressed in HucMSC-Exo. Transfection with miR-335-5p mimics resulted in increased glucose uptake. Pearson correlation analysis revealed a negative correlation between METTL14 and miR-335-5p, as well as between METTL14 and ITGβ4. The m6A level of ITGβ4 was elevated in ALI. Overexpression of METTL14 was found to reduce the expression of ITGβ4 and glucose levels, while overexpression of ITGβ4 reversed the effects of METTL14 overexpression. In vivo, results demonstrated that miR-335-5p could improve the extent of lung tissue lesions and reduce glycolytic levels. CONCLUSION This study revealed the mechanism by which miR-335-5p derived from HucMSC-Exo could alleviate LPS-induced ALI by regulating the m6A modification of ITGβ4, providing a new direction for the treatment of ALI.
Collapse
Affiliation(s)
- Linrui Li
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, 410006, China
| | - Xi Zhang
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, 410006, China
| | - Yanping Chen
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, 410006, China
| |
Collapse
|
4
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|