1
|
Lutz MR, Charlamb J, Kenna JR, Smith A, Glatt SJ, Araos JD, Andrews PL, Habashi NM, Nieman GF, Ghosh AJ. Inconsistent Methods Used to Set Airway Pressure Release Ventilation in Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Regression Analysis. J Clin Med 2024; 13:2690. [PMID: 38731219 PMCID: PMC11084500 DOI: 10.3390/jcm13092690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Airway pressure release ventilation (APRV) is a protective mechanical ventilation mode for patients with acute respiratory distress syndrome (ARDS) that theoretically may reduce ventilator-induced lung injury (VILI) and ARDS-related mortality. However, there is no standard method to set and adjust the APRV mode shown to be optimal. Therefore, we performed a meta-regression analysis to evaluate how the four individual APRV settings impacted the outcome in these patients. Methods: Studies investigating the use of the APRV mode for ARDS patients were searched from electronic databases. We tested individual settings, including (1) high airway pressure (PHigh); (2) low airway pressure (PLow); (3) time at high airway pressure (THigh); and (4) time at low pressure (TLow) for association with PaO2/FiO2 ratio and ICU length of stay. Results: There was no significant difference in PaO2/FiO2 ratio between the groups in any of the four settings (PHigh difference -12.0 [95% CI -100.4, 86.4]; PLow difference 54.3 [95% CI -52.6, 161.1]; TLow difference -27.19 [95% CI -127.0, 72.6]; THigh difference -51.4 [95% CI -170.3, 67.5]). There was high heterogeneity across all parameters (PhHgh I2 = 99.46%, PLow I2 = 99.16%, TLow I2 = 99.31%, THigh I2 = 99.29%). Conclusions: None of the four individual APRV settings independently were associated with differences in outcome. A holistic approach, analyzing all settings in combination, may improve APRV efficacy since it is known that small differences in ventilator settings can significantly alter mortality. Future clinical trials should set and adjust APRV based on the best current scientific evidence available.
Collapse
Affiliation(s)
- Mark R. Lutz
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA (J.C.); (J.R.K.)
| | - Jacob Charlamb
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA (J.C.); (J.R.K.)
| | - Joshua R. Kenna
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA (J.C.); (J.R.K.)
| | - Abigail Smith
- Health Sciences Library, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
| | - Stephen J. Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Joaquin D. Araos
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Penny L. Andrews
- Department of Critical Care, R Adams Cowley Shock Trauma Center, Baltimore, MD 21201, USA
| | - Nader M. Habashi
- Department of Critical Care, R Adams Cowley Shock Trauma Center, Baltimore, MD 21201, USA
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA (J.C.); (J.R.K.)
| | - Auyon J. Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
| |
Collapse
|
2
|
Al-Khalisy H, Nieman GF, Kollisch-Singule M, Andrews P, Camporota L, Shiber J, Manougian T, Satalin J, Blair S, Ghosh A, Herrmann J, Kaczka DW, Gaver DP, Bates JHT, Habashi NM. Time-Controlled Adaptive Ventilation (TCAV): a personalized strategy for lung protection. Respir Res 2024; 25:37. [PMID: 38238778 PMCID: PMC10797864 DOI: 10.1186/s12931-023-02615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/25/2023] [Indexed: 01/22/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Gary F Nieman
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | - Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, USA
| | | | - Joshua Satalin
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Sarah Blair
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Auyon Ghosh
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | | | | | | | - Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
3
|
Ibarra-Estrada M, Mireles-Cabodevila E, García-Salas Y, Sandoval-Plascencia L, Hernández-Lugo D, Mijangos-Méndez JC, López-Pulgarín JA, Chávez-Peña Q, Aguirre-Avalos G. The authors reply. Crit Care Med 2022; 50:e814-e816. [PMID: 36394411 PMCID: PMC9668364 DOI: 10.1097/ccm.0000000000005697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Miguel Ibarra-Estrada
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde, Jalisco, México
- División de Disciplinas Clínicas, Universidad de Guadalajara, Jalisco, México
| | | | - Yessica García-Salas
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde, Jalisco, México
- División de Disciplinas Clínicas, Universidad de Guadalajara, Jalisco, México
| | - Laura Sandoval-Plascencia
- División de Disciplinas Clínicas, Universidad de Guadalajara, Jalisco, México
- Servicio de Pediatría, Hospital Civil Juan I. Menchaca, Jalisco, México
| | - David Hernández-Lugo
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde, Jalisco, México
- División de Disciplinas Clínicas, Universidad de Guadalajara, Jalisco, México
| | - Julio C Mijangos-Méndez
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde, Jalisco, México
- División de Disciplinas Clínicas, Universidad de Guadalajara, Jalisco, México
| | - José A López-Pulgarín
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde, Jalisco, México
- División de Disciplinas Clínicas, Universidad de Guadalajara, Jalisco, México
| | - Quetzalcóatl Chávez-Peña
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde, Jalisco, México
- División de Disciplinas Clínicas, Universidad de Guadalajara, Jalisco, México
| | - Guadalupe Aguirre-Avalos
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde, Jalisco, México
- División de Disciplinas Clínicas, Universidad de Guadalajara, Jalisco, México
| |
Collapse
|
4
|
Cheng J, Wang P, Li L, Kang Y, Zhou Y. Airway Pressure Release Ventilation in Acute Respiratory Failure Due to COVID-19: No Role, We Still Need More Data. Crit Care Med 2022; 50:e813-e814. [PMID: 36394410 PMCID: PMC9668356 DOI: 10.1097/ccm.0000000000005670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiangli Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Peng Wang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Li
- First People's Hospital of Kashi, Xinjiang 844000, Kashgar, Xinjiang, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongfang Zhou
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Andrews P, Shiber J, Madden M, Nieman GF, Camporota L, Habashi NM. Myths and Misconceptions of Airway Pressure Release Ventilation: Getting Past the Noise and on to the Signal. Front Physiol 2022; 13:928562. [PMID: 35957991 PMCID: PMC9358044 DOI: 10.3389/fphys.2022.928562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.
Collapse
Affiliation(s)
- Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, United States
| | - Maria Madden
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, London, United Kingdom
| | - Nader M. Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|