1
|
Pontes KM, Del Vesco AP, Khatlab ADS, Lima Júnior JWR, Cangianelli GH, López JCC, Stivanin TE, Bastos MS, Santana TP, Gasparino E. Effects of inclusion of the blend of essential oils, organic acids, curcumin, tannins, vitamin E, and zinc in the maternal diet, and of incubation temperature on early and late development of quail. Poult Sci 2024; 103:104022. [PMID: 39068694 PMCID: PMC11332855 DOI: 10.1016/j.psj.2024.104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
The maternal diet and egg incubation temperature are some of the factors that can influence the embryonic development and performance of the newly chicks at 15 d of age. This study evaluated the effects of adding a blend of organic acids, essential oils, curcumin, tannins, vitamin E, and zinc microencapsulated in to the diet of female quails (Coturnix coturnix japonica) on their productive, reproductive performance and redox parameters of their eggs and the interaction of maternal diet × incubation temperature on embryo (E16 and E18) and chicks development. At 98 d of age, 64 female quails with a mean body weight of 150 g ± 0.5 were distributed into two treatments: a Basal diet or a diet supplemented with blend (Sannimix). The eggs from each female were incubated at 37.5°C (Control) and 38.5°C (High Temperature) throughout the incubation period. After hatching, chicks were distributed in a 2 (maternal diet) × 2 (incubation temperature) factorial design. Female quails supplemented with Sannimix showed better productive and reproductive performance and produced higher-quality embryos. Their offspring had greater weight at hatch and at 15 d of age. The eggs and offspring of supplemented with Sannimix female quails showed better oxidative stability. At E16 and E18, High Temperature increased yolk sac utilization and gene expression of the growth hormone receptor (GHR). At E16, embryos from supplemented with Sannimix female quail had higher expression of insulin-like growth factor type I (IGFI) and heat shock protein 70 kDa genes. At 15 d of age, highest expression of the GHR and IGFI genes was observed in chicks from female quails fed the Sannimix diet, regardless of incubation temperature. Regarding the maternal diet × incubation temperature an improved result was observed for chicks from female quails fed with Sannimix even when eggs are exposed to High Temperature during the incubation. The supplementation of quail diets with blend Sannimix improves productive and reproductive performance, egg quality and their embryos, as well as their offspring quality.
Collapse
Affiliation(s)
- Keila Mileski Pontes
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - Ana Paula Del Vesco
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Angélica de Souza Khatlab
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - José Wellington Rodrigues Lima Júnior
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Gabriela Hernandes Cangianelli
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - Jessica Carolina Camargo López
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - Tádia Emanuele Stivanin
- Graduate Program in Animal Science, Faculty of Agricultural and Veterinary Sciences/Paulista State University "Júlio de Mesquita Filho", Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Marisa Silva Bastos
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Thaís Pacheco Santana
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Eliane Gasparino
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
2
|
Pramana A, Kurnia D, Firmanda A, Rossi E, Ar NH, Putri VJ. Using palm oil residue for food nutrition and quality: from palm fatty acid distillate to vitamin E toward sustainability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39258508 DOI: 10.1002/jsfa.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
Increasing global palm oil production yields a valuable palm fatty acid distillate (PFAD) - a rich vitamin E (Vit-E) source and multifunctional ingredient in the food agro-industry - that can be utilized to achieve sustainability. This article reviews trends in the use and role of PFAD and its Vit-E in the food sector and proposes an integrated agro-industrial concept toward sustainability. Vit-E can be separated from PFAD with diverse and impactful pharmaceutical activities, including antioxidant, anti-inflammatory, anticancer and anti-ultraviolet effects. Based on in vivo experimental tests, PFAD and Vit-E supplementation can enhance the productivity and quality of livestock-based food products. PFAD is a plasticizer and antistatic packaging material in food packaging systems, and its derivatives can be used as food additives. Meanwhile, the Vit-E molecule in packaging can extend food shelf life by maintaining color stability, reducing lipid oxidation and rancidity, adding antimicrobial properties, and influencing changes in packaging properties such as water vapor, tensile strength, melting point and other physical properties. Toward sustainability, an integrated agro-industrial design has been proposed to implement clean production, increase the added value of palm oil industry residues, minimize environmental risks and increase profits to achieve long-term social welfare. In conclusion, PFAD residues and their Vit-E content have shown broad benefits in the food sector and prospects toward sustainability. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Dihan Kurnia
- Department of Animal Science, Politeknik Pertanian Negeri Payakumbuh, Lima Puluh Kota, Indonesia
| | - Afrinal Firmanda
- Department of Chemical Engineering, Faculty of Engineering, University of Indonesia, Depok, Indonesia
| | - Evy Rossi
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Nur Hasnah Ar
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Vivin Jenika Putri
- Department of Agricultural Technology, Faculty of Agricultural, Lancang Kuning University, Pekanbaru, Indonesia
| |
Collapse
|
3
|
Huang Z, Dai H, Li S, Wang Z, Wei Q, Ning Z, Guo Y, Shi F, Lv Z. Maternal supplementation with mulberry-leaf flavonoids improves the development of skeletal muscle in the offspring of chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:72-83. [PMID: 39035983 PMCID: PMC11260304 DOI: 10.1016/j.aninu.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/16/2024] [Accepted: 04/10/2024] [Indexed: 07/23/2024]
Abstract
The development of skeletal muscle is a crucial factor in determining the meat yield and economic benefits of broiler production. Recent research has shown that mulberry leaves and their extracts can be used to significantly improve the growth performance of livestock and poultry. The present study aims to elucidate the mechanisms involved in the regulation of skeletal muscle development in broiler offspring by dietary mulberry-leaf flavonoids (MLF) supplementation from the perspective of maternal effect theory. A total of 270 Qiling broiler breeder hens were randomly assigned to 3 treatments with different doses of MLF (0, 30, 60 mg/kg) for 8 weeks before collecting their fertilized eggs. The chicken offspring at 13 and 19 d of embryonic stage, and from 1 to 28 d old after hatching were included in this study. The results showed that maternal supplementation increased the breast muscle weight and body weight of the offspring at the embryo and chick stages (P < 0.05). This was followed by increased cross-sectional area of pectoral muscle fibres at 14 d (P < 0.05). Further determination revealed a tendency towards increased serum levels of insulin-like growth factor 1 (IGF-1) (P = 0.092) and muscle fibre count (P = 0.167) at 1 d post-hatching following maternal MLF treatment, while serum uric acid (UA) was decreased at 14 d after hatching (P < 0.05). Moreover, maternal MLF supplementation significantly up-regulated the mRNA expression of the myogenic regulatory factor Myf5 in skeletal muscle at the both embryonic and growth stages (P < 0.05). The relative abundance of the downstream protein of BMPR2, Smad1 and p-Smad1/5/9 in the TGFβ signalling pathway was significantly increased by maternal MLF treatment. Meanwhile, the increased expression of the target protein p-mTOR in the breast muscle of the offspring chicks is in accordance with the improved growth rate of the breast and the body. In conclusion, maternal MLF supplementation can promote muscle protein metabolism and muscle fibre development of chick embryos through upregulation of Myf5 expression and BMP/p-Smad1/5/9 axis, thereby improving growth performance of slow growing broiler.
Collapse
Affiliation(s)
- Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Simeng Li
- School of Biotechnology, Aksu Vocational and Technical College, Aksu, 843000, China
| | - Zhe Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Liu J, Liu J, Zhou S, Fu Y, Yang Q, Li Y. Effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids in layers. Front Vet Sci 2023; 10:1301542. [PMID: 38188719 PMCID: PMC10766699 DOI: 10.3389/fvets.2023.1301542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
In this study, the effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids (SCFAs) were compared in layers. Hyline brown layers at 385 days of age with a similar laying rate (81.36% ± 0.62%) and body weight (2.10 kg ± 0.04 kg) were randomly divided into three treatments, six replicates per treatment, and 20 layers per replicate. Layers in control, quercetin, and daidzein treatment were fed by a basal diet supplemented with 0 mg/kg, 500 mg/kg quercetin, and 30 mg/kg of daidzein for 10 weeks. Results showed that eggshell strength and albumen height in week 4, egg yolk diameter in week 10, and eggshell thickness and egg yolk height in weeks 4 and 10 were significantly increased in the quercetin treatment (P ≤ 0.05); contents of phospholipid (PL) and lecithin (LEC) in egg yolk and high-density lipoprotein (HDL) content in serum were significantly increased; however, contents of malondialdehyde (MDA), total cholesterol (TC), and triglyceride (TG) in egg yolk, contents of TC, TG, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) in serum, and contents of TC and TG in the liver were significantly decreased in the quercetin treatment (P ≤ 0.05); contents of isobutyric acid and valeric acid were significantly increased in the cecum of the quercetin treatment (P ≤ 0.05), compared with control. Moreover, egg yolk height in week 10 and eggshell thickness in weeks 4 and 10 were significantly increased in the daidzein treatment (P ≤ 0.05); contents of MDA, TC, and TG in egg yolk, TC, TG, and VLDL in serum, and TC and TG in liver were significantly decreased in the daidzein treatment (P ≤ 0.05); and HDL content was significantly increased in serum of the daidzein treatment (P ≤ 0.05) compared with control. However, daidzein did not affect SCFA content in the cecum. In conclusion, egg quality was improved by quercetin and daidzein by increasing the antioxidant ability of egg yolk and by regulating lipid metabolism in layers. Quercetin worked better than daidzein in improving egg quality under this experimental condition.
Collapse
Affiliation(s)
| | | | | | | | | | - Yao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Ren X, Ren J, Li Y, Yuan S, Wang G. Preparation of caffeic acid grafted chitosan self-assembled micelles to enhance oral bioavailability and antibacterial activity of quercetin. Front Vet Sci 2023; 10:1218025. [PMID: 37476826 PMCID: PMC10354432 DOI: 10.3389/fvets.2023.1218025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Quercetin (QR) is a naturally occurring flavonoid organic compound that has poor solubility in water and highly unstable in alkaline conditions, resulting in limited absorption in poultry. Consequently, in our experiment, QR was employed as a model compound, encapsulated within the caffeic acid graft chitosan copolymer (CA-g-CS) self-assembled micelles to enhance its solubility, stability and exhibit a synergistic antibacterial effect. The optimization of the formula was carried out using a combination of single-factor experimentation and the response surface method. The in vitro release rate and stability of CA-g-CS-loaded QR micelles (CA-g-CS/QR) in various pH media were studied and the pharmacokinetics in white feather broiler chickens was evaluated in vivo. Additionally, the antibacterial activity was investigated using Escherichia coliCMCC44102 and Escherichia coli of chicken origin as the test strain. The results showed the optimized formula for the self-assembled micelles were 4 mL water, 0.02 mg/mL graft copolymer, and 1 mg QR, stirring at room temperature. The encapsulation efficiency was 72.09%. The resulting CA-g-CS/QR was uniform in size with an average diameter of 375.6 ± 5.9 nm. The release pattern was consistent with the Ritger-Peppas model. CA-g-CS/QR also significantly improved the stability of QR in alkaline condition. The relative bioavailability of CA-g-CS/QR was found to be 1.67-fold that of the reference drug, indicating a substantial increase in the absorption of QR in the broiler. Compared to the original drug, the antibacterial activity of CA-g-CS/QR was significantly enhanced, as evidenced by a reduction of half in the MIC and MBC values. These results suggest that CA-g-CS/QR improves the bioavailability and antibacterial activity of QR, making it a promising candidate for clinical use.
Collapse
Affiliation(s)
- Xin Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Juan Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Yipeng Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Sikun Yuan
- Baoding Institute for Food and Drug Control, Baoding, Hebei, China
| | - Gengnan Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
6
|
Amevor FK, Cui Z, Du X, Feng J, Shu G, Ning Z, Xu D, Deng X, Song W, Wu Y, Cao X, Wei S, He J, Kong F, Du X, Tian Y, Karikari B, Li D, Wang Y, Zhang Y, Zhu Q, Zhao X. Synergy of Dietary Quercetin and Vitamin E Improves Cecal Microbiota and Its Metabolite Profile in Aged Breeder Hens. Front Microbiol 2022; 13:851459. [PMID: 35656004 PMCID: PMC9152675 DOI: 10.3389/fmicb.2022.851459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
In the present study, the synergistic effects of quercetin (Q) and vitamin E (E) on cecal microbiota composition and function, as well as the microbial metabolic profile in aged breeder hens were investigated. A total of 400 (65 weeks old) Tianfu breeder hens were randomly allotted to four experimental groups (four replicates per group). The birds were fed diets containing quercetin at 0.4 g/kg, vitamin E (0.2 g/kg), quercetin and vitamin E (QE; 0.4 g/kg and 0.2 g/kg), and a basal diet for a period of 10 wks. After the 10 week experimental period, the cecal contents of 8 aged breeder hens per group were sampled aseptically and subjected to high-throughput 16S rRNA gene sequencing and untargeted metabolomic analysis. The results showed that the relative abundances of phyla Bacteroidota, Firmicutes, and Actinobacteriota were the most prominent among all the dietary groups. Compared to the control group, the relative abundance of the families Bifidobacteriaceae, Lachnospiraceae, Tannerellaceae, Mathonobacteriaceae, Barnesiellaceae, and Prevotellaceae were enriched in the QE group; and Bacteroidaceae, Desulfovibrionaceae, Peptotostretococcaceae, and Fusobacteriaceae were enriched in the Q group, whereas those of Lactobacillaceae, Veillonellaceae, Ruminococcaceae, Akkermansiaceae, and Rikenellaceae were enriched in the E group compared to the control group. Untargeted metabolomics analyses revealed that Q, E, and QE modified the abundance of several metabolites in prominent pathways including ubiquinone and other terpenoid-quinone biosynthesis, regulation of actin cytoskeleton, insulin secretion, pancreatic secretion, nicotine addiction, and metabolism of xenobiotics by cytochrome P450. Furthermore, key cecal microbiota, significantly correlated with important metabolites, for example, (S)-equol positively correlated with Alistipes and Chlamydia in E_vs_C, and negatively correlated with Olsenella, Paraprevotella, and Mucispirillum but, a contrary trend was observed with Parabacteroides in QE_vs_C. This study establishes that the synergy of quercetin and vitamin E alters the cecal microbial composition and metabolite profile in aged breeder hens, which lays a foundation for chicken improvement programs.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jing Feng
- Institute of Animal Husbandry and Veterinary Medicine, College of Agriculture and Animal Husbandry, Tibet Autonomous Region, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Weizhen Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xueqing Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuo Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Benjamin Karikari
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Nanjing Agricultural University, Nanjing, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|