1
|
Kleene SJ. Hyperosmolality activates polycystin-2 and TRPM4 in renal primary cilium. Pflugers Arch 2024:10.1007/s00424-024-03050-8. [PMID: 39688695 DOI: 10.1007/s00424-024-03050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/09/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease characterized by renal cysts. It arises from mutations in proteins expressed in part in the primary cilia of renal epithelial cells. One of these, polycystin-2 (PC2), is an ion-conducting channel. To date, ion channels in the cilium have only been characterized in standard normosmolar external solutions, but the osmolality of the renal filtrate bathing the cilia varies widely. Here I report that urine, which better represents the filtrate, activates a large cation-conducting current in the cilia. With defined external solutions, hyperosmolality through addition of urea, NaCl, or D-mannitol activates a similar current. Most but not all of this current is conducted through TRPM4 channels. It is greatly reduced by internal MgATP or 9-phenanthrol, which inhibit TRPM4, or by shRNA knockdown of TRPM4. However, part of the current activated by urea conducts Ca2+ through channels that remain to be identified. External hyperosmolality also greatly increases the activity of ciliary PC2 channels; this is the first physiological stimulus identified for these channels. Possibilities are discussed for the mechanisms of channel activation and the roles for these activities in regulatory volume increase and cystogenesis.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Fitzsimons LA, Staurengo-Ferrari L, Khomula EV, Bogen O, Araldi D, Bonet IJM, Green PG, Jordan EE, Sclafani F, Nowak CE, Moulton JK, Ganter GK, Levine JD, Tucker KL. The Nociceptor Primary Cilium Contributes to Mechanical Nociceptive Threshold and Inflammatory and Neuropathic Pain. J Neurosci 2024; 44:e1265242024. [PMID: 39349056 PMCID: PMC11580782 DOI: 10.1523/jneurosci.1265-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The primary cilium, a single microtubule-based organelle protruding from the cell surface and critical for neural development, also functions in adult neurons. While some dorsal root ganglion neurons elaborate a primary cilium, whether it is expressed by and functional in nociceptors is unknown. Recent studies have shown the role of Hedgehog, whose canonical signaling is primary cilium dependent, in nociceptor sensitization. We establish the presence of primary cilia in soma of rat nociceptors, where they contribute to mechanical threshold, prostaglandin E2 (PGE2)-induced hyperalgesia, and chemotherapy-induced neuropathic pain (CIPN). Intrathecal administration of siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, resulted in attenuation of Ift88 mRNA and nociceptor primary cilia. Attenuation of primary cilia was associated with an increase in mechanical nociceptive threshold in vivo and decrease in nociceptor excitability in vitro, abrogation of hyperalgesia, and nociceptor sensitization induced by both a prototypical pronociceptive inflammatory mediator PGE2 and paclitaxel CIPN, in a sex-specific fashion. siRNA targeting Ift52, another IFT protein, and knockdown of NompB, the Drosophila Ift88 ortholog, also abrogated CIPN and reduced baseline mechanosensitivity, respectively, providing independent confirmation for primary cilia control of nociceptor function. Hedgehog-induced hyperalgesia is attenuated by Ift88 siRNA, supporting the role for primary cilia in Hedgehog-induced hyperalgesia. Attenuation of CIPN by cyclopamine (intradermal and intraganglion), which inhibits Hedgehog signaling, supports the role of Hedgehog in CIPN. Our findings support the role of the nociceptor primary cilium in control of mechanical nociceptive threshold and inflammatory and neuropathic pain, the latter Hedgehog-dependent.
Collapse
Affiliation(s)
- Lindsey A Fitzsimons
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Eugen V Khomula
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Dionéia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Ivan J M Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Preventative and Restorative Dental Sciences, University of California San Francisco, San Francisco 94115
| | - Ethan E Jordan
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Finn Sclafani
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Connor E Nowak
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Julie K Moulton
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Geoffrey K Ganter
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Medicine, Division of Neuroscience, University of California San Francisco, San Francisco 94115
| | - Kerry L Tucker
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| |
Collapse
|
3
|
Márquez-Nogueras KM, Kuo IY. Cardiovascular perspectives of the TRP channel polycystin 2. J Physiol 2024; 602:1565-1577. [PMID: 37312633 PMCID: PMC10716366 DOI: 10.1113/jp283835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023] Open
Abstract
Calcium release from the endoplasmic reticulum (ER) is predominantly driven by two key ion channel receptors, inositol 1, 4, 5-triphosphate receptor (InsP3R) in non-excitable cells and ryanodine receptor (RyR) in excitable and muscle-based cells. These calcium transients can be modified by other less-studied ion channels, including polycystin 2 (PC2), a member of the transient receptor potential (TRP) family. PC2 is found in various cell types and is evolutionarily conserved with paralogues ranging from single-cell organisms to yeasts and mammals. Interest in the mammalian form of PC2 stems from its disease relevance, as mutations in the PKD2 gene, which encodes PC2, result in autosomal dominant polycystic kidney disease (ADPKD). This disease is characterized by renal and liver cysts, and cardiovascular extrarenal manifestations. However, in contrast to the well-defined roles of many TRP channels, the role of PC2 remains unknown, as it has different subcellular locations, and the functional understanding of the channel in each location is still unclear. Recent structural and functional studies have shed light on this channel. Moreover, studies on cardiovascular tissues have demonstrated a diverse role of PC2 in these tissues compared to that in the kidney. We highlight recent advances in understanding the role of this channel in the cardiovascular system and discuss the functional relevance of PC2 in non-renal cells.
Collapse
Affiliation(s)
- Karla M Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
4
|
Fitzsimons LA, Staurengo-Ferrari L, Bogen O, Araldi D, Bonet IJM, Jordan EE, Levine JD, Tucker KL. The Primary Cilium and its Hedgehog Signaling in Nociceptors Contribute to Inflammatory and Neuropathic Pain. RESEARCH SQUARE 2024:rs.3.rs-3812442. [PMID: 38464172 PMCID: PMC10925437 DOI: 10.21203/rs.3.rs-3812442/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The primary cilium, a 1-3 μm long hair-like structure protruding from the surface of almost all cells in the vertebrate body, is critical for neuronal development and also functions in the adult. As the migratory neural crest settles into dorsal root ganglia (DRG) sensory neurons elaborate a single primary cilium at their soma that is maintained into adult stages. While it is not known if primary cilia are expressed in nociceptors, or their potential function in the mature DRG neuron, recent studies have shown a role for Hedgehog, whose signaling demonstrates a dependence on primary cilia, in nociceptor sensitization. Here we report the expression of primary cilia in rat and mouse nociceptors, where they modulate mechanical nociceptive threshold, and contribute to inflammatory and neuropathic pain. When siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, was administered by intrathecal injection, in the rat, it resulted in loss of Ift88 mRNA in DRG, and primary cilia in neuronal cell bodies, which was associated with an increase in mechanical nociceptive threshold, and abrogation of hyperalgesia induced by the pronociceptive inflammatory mediator, prostaglandin E2, and painful peripheral neuropathy induced by a neurotoxic chemotherapy drug, paclitaxel. To provide further support for the role of the primary cilium in nociceptor function we also administered siRNA for another IFT protein, Ift52. Ift52 siRNA results in loss of Ift52 in DRG and abrogates paclitaxel-induced painful peripheral neuropathy. Attenuation of Hedgehog-induced hyperalgesia by Ift88 knockdown supports a role for the primary cilium in the hyperalgesia induced by Hedgehog, and attenuation of paclitaxel chemotherapy-induced neuropathy (CIPN) by cyclopamine, which attenuates Hedgehog signaling, suggests a role of Hedgehog in CIPN. Our findings support a role of nociceptor primary cilia in the control of mechanical nociceptive threshold and in inflammatory and neuropathic pain, the latter, at least in part, Hedgehog dependent.
Collapse
Affiliation(s)
- Lindsey A. Fitzsimons
- Dept. of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco, United States
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco, United States
| | - Dioneia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco, United States
| | - Ivan J. M. Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco, United States
| | - Ethan E. Jordan
- Dept. of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Jon D. Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco, United States
| | - Kerry L. Tucker
- Dept. of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| |
Collapse
|
5
|
Fitzsimons LA, Staurengo-Ferrari L, Bogen O, Araldi D, Bonet IJM, Jordan EE, Levine JD, Tucker KL. The Primary Cilium and its Hedgehog Signaling in Nociceptors Contribute to Inflammatory and Neuropathic Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573420. [PMID: 38234719 PMCID: PMC10793418 DOI: 10.1101/2023.12.27.573420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The primary cilium, a 1-3 μm long hair-like structure protruding from the surface of almost all cells in the vertebrate body, is critical for neuronal development and also functions in the adult. As the migratory neural crest settles into dorsal root ganglia (DRG) sensory neurons elaborate a single primary cilium at their soma that is maintained into adult stages. While it is not known if primary cilia are expressed in nociceptors, or their potential function in the mature DRG neuron, recent studies have shown a role for Hedgehog, whose signaling demonstrates a dependence on primary cilia, in nociceptor sensitization. Here we report the expression of primary cilia in rat and mouse nociceptors, where they modulate mechanical nociceptive threshold, and contribute to inflammatory and neuropathic pain. When siRNA targeting Ift88 , a primary cilium-specific intra-flagellar transport (IFT) protein required for ciliary integrity, was administered by intrathecal injection, in the rat, it resulted in loss of Ift88 mRNA in DRG, and primary cilia in neuronal cell bodies, which was associated with an increase in mechanical nociceptive threshold, and abrogation of hyperalgesia induced by the pronociceptive inflammatory mediator, prostaglandin E 2 , and painful peripheral neuropathy induced by a neurotoxic chemotherapy drug, paclitaxel. To provide further support for the role of the primary cilium in nociceptor function we also administered siRNA for another IFT protein, Ift 52. Ift 52 siRNA results in loss of Ift 52 in DRG and abrogates paclitaxel-induced painful peripheral neuropathy. Attenuation of Hedgehog-induced hyperalgesia by Ift88 knockdown supports a role for the primary cilium in the hyperalgesia induced by Hedgehog, and attenuation of paclitaxel chemotherapy-induced neuropathy (CIPN) by cyclopamine, which attenuates Hedgehog signaling, suggests a role of Hedgehog in CIPN. Our findings support a role of nociceptor primary cilia in the control of mechanical nociceptive threshold and in inflammatory and neuropathic pain, the latter, at least in part, Hedgehog dependent.
Collapse
|
6
|
Márquez-Nogueras KM, Vuchkovska V, Kuo IY. Calcium signaling in polycystic kidney disease- cell death and survival. Cell Calcium 2023; 112:102733. [PMID: 37023534 PMCID: PMC10348384 DOI: 10.1016/j.ceca.2023.102733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Polycystic kidney disease is typified by cysts in the kidney and extra-renal manifestations including hypertension and heart failure. The main genetic underpinning this disease are loss-of function mutations to the two polycystin proteins, polycystin 1 and polycystin 2. Molecularly, the disease is characterized by changes in multiple signaling pathways including down regulation of calcium signaling, which, in part, is contributed by the calcium permeant properties of polycystin 2. These signaling pathways enable the cystic cells to survive and avoid cell death. This review focuses on the studies that have emerged in the past 5 years describing how the structural insights gained from PC-1 and PC-2 inform the calcium dependent molecular pathways of autophagy and the unfolded protein response that are regulated by the polycystin proteins and how it leads to cell survival and/or cell death.
Collapse
Affiliation(s)
- Karla M Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA
| | - Virdjinija Vuchkovska
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA; Graduate School, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA.
| |
Collapse
|
7
|
Márquez-Nogueras KM, Knutila RM, Vuchkosvka V, Kuo IY. TRiPPing the sensors: The osmosensing pathway of Polycystin 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540007. [PMID: 37214815 PMCID: PMC10197615 DOI: 10.1101/2023.05.09.540007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mutations to polycystin-2 (PC2), a non-selective cation permeant transient receptor potential channel, results in polycystic kidney disease (PKD). Despite the disease relevance of PC2, the physiological agonist that activates PC2 has remained elusive. As one of the earliest symptoms in PKD is a urine concentrating deficiency, we hypothesized that shifts in osmolarity experienced by the collecting duct cells would activate PC2 and loss of PC2 would prevent osmosensing. We found that mice with inducible PC2 knocked out (KO) in renal tubules had dilute urine. Hyperosmotic stimuli induced a rise in endoplasmic reticulum (ER)-mediated cytosolic calcium which was absent in PC2 KO mice and PC2 KO cells. A pathologic point mutation that prevents ion flux through PC2 inhibited the calcium rise, pointing to the centrality of PC2 in the osmotic response. To understand how an extracellular stimulus activated ER-localized PC2, we examined microtubule-ER dynamics, and found that the osmotically induced calcium increase was preceded by microtubule destabilization. This was due to a novel interaction between PC2 and the microtubule binding protein MAP4 that tethers the microtubules to the ER. Finally, disruption of the MAP4-PC2 interaction prevented incorporation of the water channel aquaporin 2 following a hyperosmotic challenge, in part explaining the dilute urine. Our results demonstrate that MAP4-dependent microtubule stabilization of ER-resident PC2 is required for PC2 to participate in the osmosensing pathway. Moreover, osmolarity represents a bona fide physiological stimulus for ER-localized PC2 and loss of PC2 in renal epithelial cells impairs osmosensing ability and urine concentrating capacity.
Collapse
|
8
|
Li H, Yang L, Hou Y, Zhang Y, Cui Y, Li X. Potential involvement of polycystins in the pathogenesis of ameloblastomas: Analysis based on bioinformatics and immunohistochemistry. Arch Oral Biol 2023; 149:105662. [PMID: 36857877 DOI: 10.1016/j.archoralbio.2023.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To perform an integrated analysis in identifying novel hub genes that could facilitate the diagnosis and targeted therapy of ameloblastoma. DESIGN The expression profiling dataset, GSE38494, was obtained from the Gene Expression Omnibus database. Differentially expressed genes were identified through GEO2R online tool and characterised via Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The protein-protein interaction network and hub genes were screened using the STRING database and Cytoscape software. Subsequently, an upregulated gene was selected for further validation using the GSE132472 dataset. Further, immunohistochemistry was performed to assess the expression of the selected gene in ameloblastomas, odontogenic keratocysts, dentigerous cysts, and gingival tissues. The diagnostic and therapeutic utility of the selected hub genes were further verified by receiver operating characteristic analysis and the DGIdb database. RESULTS We identified six hub genes in ameloblastoma, among which the upregulated gene PKD2 and its related gene PKD1 were further validated. GO functional annotation revealed that PKD2 is involved in cell-cell junction, extracellular exosome, cytoplasm, endoplasmic reticulum, and calcium ion transport. The immunohistochemical analysis showed that the expression of polycystin-1 and polycystin-2, encoded by the PKD1 and PKD2 genes, respectively, was upregulated in ameloblastoma. PKD1 and PKD2 had a high diagnostic utility for ameloblastoma, and allopurinol interacted with the PKD2 gene. CONCLUSION Our research indicates that polycystins are highly expressed in ameloblastoma and might be involved in the oncogenesis of ameloblastoma, thus offering a new perspective on the molecular mechanisms and targeted therapies on ameloblastoma.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University &Hebei Key Laboratory of Stomatology& Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, PR China
| | - Li Yang
- Department of Oral and Maxillofacial Surgery, The Second People's Hospital of Yibin, 644000, PR China
| | - Yali Hou
- Department of Oral Pathology, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yanning Zhang
- Department of Oral Pathology, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yunyi Cui
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University &Hebei Key Laboratory of Stomatology& Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, PR China
| | - Xiangjun Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University &Hebei Key Laboratory of Stomatology& Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, PR China.
| |
Collapse
|