1
|
Sadowska J, Carlson KM, Buck CL, Lee TN, Duddleston KN. Microbial urea-nitrogen recycling in arctic ground squirrels: the effect of ambient temperature of hibernation. J Comp Physiol B 2024; 194:909-924. [PMID: 39237834 PMCID: PMC11511772 DOI: 10.1007/s00360-024-01579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Energy conservation associated with hibernation is maximized at the intersection of low body temperature (Tb), long torpor bouts, and few interbout arousals. In the arctic ground squirrel (Urocitellus parryii), energy conservation during hibernation is best achieved at ambient temperatures (Ta) around 0 °C; however, they spend the majority of hibernation at considerably lower Ta. Because arctic ground squirrels switch to mixed fuel metabolism, including protein catabolism, at extreme low Ta of hibernation, we sought to investigate how microbial urea-nitrogen recycling is used under different thermal conditions. Injecting squirrels with isotopically labeled urea (13C/15N) during hibernation at Ta's of - 16 °C and 2 °C and while active and euthermic allowed us to assess the ureolytic activity of gut microbes and the amount of liberated nitrogen incorporated into tissues. We found greater incorporation of microbially-liberated nitrogen into tissues of hibernating squirrels. Although ureolytic activity appears higher in euthermic squirrels, liberated nitrogen likely makes up a smaller percentage of the available nitrogen pool in active, fed animals. Because non-lipid fuel is a limiting factor for torpor at lower Ta in this species, we hypothesized there would be greater incorporation of liberated nitrogen in animals hibernating at - 16 °C. However, we found higher microbial-ureolytic activity and incorporation of microbially-liberated nitrogen, particularly in the liver, in squirrels hibernating at 2 °C. Likely this is because squirrels hibernating at 2 °C had higher Tb and longer interbout arousals, a combination of factors creating more favorable conditions for gut microbes to thrive and maintain greater activity while giving the host more time to absorb microbial metabolites.
Collapse
Affiliation(s)
- Julita Sadowska
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, Białystok, Poland
| | - Karen M Carlson
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, Anchorage, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, USA
| | - Trixie N Lee
- Department of Biology, Harding University, Searcy, AR, USA
| | - Khrystyne N Duddleston
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, Anchorage, USA.
| |
Collapse
|
2
|
Torson AS, Yocum GD, Bowsher JH. Molecular mechanisms and trade-offs underlying fluctuating thermal regimes during low-temperature storage. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101160. [PMID: 38215877 DOI: 10.1016/j.cois.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Insects exposed to constant low temperatures (CLT) exhibit high rates of mortality as well as a variety of sublethal effects. In many species, interruptions of CLT with brief pulses of warm temperatures (fluctuating thermal regimes, FTR) lead to increases in survival and fewer sublethal effects. However, we still lack a complete understanding of the physiological mechanisms activated during FTR. In this review, we discuss recent advances in understanding FTR's underlying molecular mechanisms. We discuss knowledge gaps related to potential trade-offs between FTR's beneficial effects and the costs of these repairs to overwintering reserves and reproduction. We present the hypothesis that the warm pulse of FTR helps to maintain daily rhythmicity.
Collapse
Affiliation(s)
- Alex S Torson
- Department of Biological Sciences, North Dakota State University, P.O. Box 6050, Fargo, ND 58108, USA
| | - George D Yocum
- Department of Biological Sciences, North Dakota State University, P.O. Box 6050, Fargo, ND 58108, USA
| | - Julia H Bowsher
- USDA-ARS Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA.
| |
Collapse
|
3
|
Emser SV, Spielvogel CP, Millesi E, Steinborn R. Mitochondrial polymorphism m.3017C>T of SHLP6 relates to heterothermy. Front Physiol 2023; 14:1207620. [PMID: 37675281 PMCID: PMC10478271 DOI: 10.3389/fphys.2023.1207620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Heterothermic thermoregulation requires intricate regulation of metabolic rate and activation of pro-survival factors. Eliciting these responses and coordinating the necessary energy shifts likely involves retrograde signalling by mitochondrial-derived peptides (MDPs). Members of the group were suggested before to play a role in heterothermic physiology, a key component of hibernation and daily torpor. Here we studied the mitochondrial single-nucleotide polymorphism (SNP) m.3017C>T that resides in the evolutionarily conserved gene MT-SHLP6. The substitution occurring in several mammalian orders causes truncation of SHLP6 peptide size from twenty to nine amino acids. Public mass spectrometric (MS) data of human SHLP6 indicated a canonical size of 20 amino acids, but not the use of alternative translation initiation codons that would expand the peptide. The shorter isoform of SHLP6 was found in heterothermic rodents at higher frequency compared to homeothermic rodents (p < 0.001). In heterothermic mammals it was associated with lower minimal body temperature (T b, p < 0.001). In the thirteen-lined ground squirrel, brown adipose tissue-a key organ required for hibernation, showed dynamic changes of the steady-state transcript level of mt-Shlp6. The level was significantly higher before hibernation and during interbout arousal and lower during torpor and after hibernation. Our finding argues to further explore the mode of action of SHLP6 size isoforms with respect to mammalian thermoregulation and possibly mitochondrial retrograde signalling.
Collapse
Affiliation(s)
- Sarah V. Emser
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Clemens P. Spielvogel
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Strandvik B, Qureshi AR, Painer J, Backman-Johansson C, Engvall M, Fröbert O, Kindberg J, Stenvinkel P, Giroud S. Elevated plasma phospholipid n-3 docosapentaenoic acid concentrations during hibernation. PLoS One 2023; 18:e0285782. [PMID: 37294822 PMCID: PMC10256182 DOI: 10.1371/journal.pone.0285782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/28/2023] [Indexed: 06/11/2023] Open
Abstract
Factors for initiating hibernation are unknown, but the condition shares some metabolic similarities with consciousness/sleep, which has been associated with n-3 fatty acids in humans. We investigated plasma phospholipid fatty acid profiles during hibernation and summer in free-ranging brown bears (Ursus arctos) and in captive garden dormice (Eliomys quercinus) contrasting in their hibernation patterns. The dormice received three different dietary fatty acid concentrations of linoleic acid (LA) (19%, 36% and 53%), with correspondingly decreased alpha-linolenic acid (ALA) (32%, 17% and 1.4%). Saturated and monounsaturated fatty acids showed small differences between summer and hibernation in both species. The dormice diet influenced n-6 fatty acids and eicosapentaenoic acid (EPA) concentrations in plasma phospholipids. Consistent differences between summer and hibernation in bears and dormice were decreased ALA and EPA and marked increase of n-3 docosapentaenoic acid and a minor increase of docosahexaenoic acid in parallel with several hundred percent increase of the activity index of elongase ELOVL2 transforming C20-22 fatty acids. The highest LA supply was unexpectantly associated with the highest transformation of the n-3 fatty acids. Similar fatty acid patterns in two contrasting hibernating species indicates a link to the hibernation phenotype and requires further studies in relation to consciousness and metabolism.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Stockholm, Sweden
| | | | - Johanna Painer
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
- Department of Clinical Medicine, Aarhus University Health, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- StenoDiabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, University of Agricultural Sciences, Umeå, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Peter Stenvinkel
- Division of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
5
|
Geiser F, Ruf T. Long-term survival, temperature, and torpor patterns. Sci Rep 2023; 13:6673. [PMID: 37095170 PMCID: PMC10126141 DOI: 10.1038/s41598-023-33646-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Mammalian and avian torpor is highly effective in reducing energy expenditure. However, the extent of energy savings achieved and thus long-term survival appear to differ between species capable of multiday hibernation and species restricted to daily heterothermy, which could, however, be due to thermal effects. We tested how long-term survival on stored body fat (i.e. time to lean body mass), crucial for overcoming adverse periods, is related to the pattern of torpor expressed under different ambient temperatures (Ta: 7 °C typical of hibernation, 15 and 22 °C typical of daily torpor) in the small marsupial hibernator the pygmy-possum (Cercartetus nanus). Possums expressed torpor at all Tas and survived without food for 310 days on average at Ta 7 °C, 195 days at Ta 15 °C, and 127 days at Ta 22 °C. At Ta 7 and 15 °C, torpor bout duration (TBD) increased from < 1-3 to ~ 5-16 days over 2 months, whereas at Ta 22 °C, TBD remained at < 1 to ~ 2 days. At all Tas daily energy use was substantially lower and TBD and survival times of possums much longer (3-12 months) than in daily heterotherms (~ 10 days). Such pronounced differences in torpor patterns and survival times even under similar thermal conditions provide strong support for the concept that torpor in hibernators and daily heterotherms are physiologically distinct and have evolved for different ecological purposes.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, 2351, Australia
| | - Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria.
| |
Collapse
|
6
|
Energy expenditure and body composition in a hibernator, the alpine marmot. J Comp Physiol B 2023; 193:135-143. [PMID: 36335482 PMCID: PMC9852207 DOI: 10.1007/s00360-022-01466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Visceral organs and tissues of 89 free-living alpine marmots (Marmota marmota) shot during a population control program in Switzerland, were collected. Between emergence from hibernation in April to July, the gastrointestinal tract (stomach to colon) gained 51% of mass and the liver mass increased by 24%. At the same time, the basal metabolic rate (BMR), determined with a portable oxygen analyzer, increased by 18%. The organ masses of the digestive system (stomach, small intestine, caecum, large intestine) were all significantly correlated with BMR. Interestingly, the mass of abdominal white adipose tissue (WAT) and of the remaining carcass (mainly skin and bones) were also significantly correlated with BMR. These results indicate that the gastrointestinal tract and organs involved in digestive function are metabolically expensive. They also show that it is costly to maintain even tissues with low metabolic rate such as WAT, especially if they are large. Heart and kidneys and especially brain and lungs did not explain a large proportion of the variance in BMR. Marmots increased the uptake of fat prior to hibernation, both by selective feeding and enhanced gastrointestinal capacity. Large fat reserves enable marmots to hibernate without food intake and to reproduce in spring, but at the cost of an elevated BMR. We predict that climate changes that disturb energy accumulation in summer, increase energy expenditure in winter, or delay the emergence from hibernation in spring, such as the occurrence of storms with increasing frequency, will increase mortality in alpine marmots.
Collapse
|
7
|
Ruf T, Bieber C. Why hibernate? Predator avoidance in the edible dormouse. MAMMAL RES 2022; 68:1-11. [PMID: 36624745 PMCID: PMC9816287 DOI: 10.1007/s13364-022-00652-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
We address the question of ultimate selective advantages of hibernation. Biologists generally seem to accept the notion that multiday torpor is primarily a response to adverse environmental conditions, namely cold climate and low food abundance. We closely examine hibernation, and its summer equivalent estivation, in the edible dormouse, Glis glis. We conclude that in this species, hibernation is not primarily driven by poor conditions. Dormice enter torpor with fat reserves in years that are unfavourable for reproduction but provide ample food supply for animals to sustain themselves and even gain body energy reserves. While staying in hibernacula below ground, hibernators have much higher chances of survival than during the active season. We think that dormice enter prolonged torpor predominantly to avoid predation, mainly nocturnal owls. Because estivation in summer is immediately followed by hibernation, this strategy requires a good body condition in terms of fat reserves. As dormice age, they encounter fewer occasions to reproduce when calorie-rich seeds are available late in the year, and phase advance the hibernation season. By early emergence from hibernation, the best territories can be occupied and the number of mates maximised. However, this advantage comes at the cost of increased predation pressure that is maximal in spring. We argue the predator avoidance is generally one of the primary reasons for hibernation, as increased perceived predation pressure leads to an enhanced torpor use. The edible dormouse may be just an example where this behaviour becomes most obvious, on the population level and across large areas.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|