1
|
Chen F, Liu Z, Xie C, He J, Chen J, Peng K, Chen X, He J, Liu Z, Yang H, Kang K, He B, Lin Q. The effect of Alpinia oxyphylla essential oil on growth performance, immune, antioxidant functions and gut microbiota in pigs. Front Vet Sci 2024; 11:1468520. [PMID: 39720412 PMCID: PMC11666522 DOI: 10.3389/fvets.2024.1468520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Alpinia oxyphylla, a perennial herb belonging to the Zingiberaceae family, has a long history of traditional medicinal use. The present study evaluated the efficacy of different concentrations of Alpinia oxyphylla essential oil (AEO) on the growth performance, serum antioxidation capacities, immune function, apparent digestibility of nutrients, and gut microbiota in fattening pigs. A total of 120 pigs were divided into five treatments, with six replicates each and four pigs per replicate. The pigs were fed a basal diet or basal diet with chlortetracycline (CTC) alone or AEO at 250, 500, and 1,000 mg/kg (referred to as groups AEO1, AEO2, and AEO3, respectively) for 35 days, preceded by a 7-day pre-feed period. The results show that there were no statistically significant differences in growth performance for any dose of AEO supplementation. AEO increased L-DLC content, total protein content and the activity of GSH in serum (p < 0.05). The AEO also exhibited a linear increase in serum IgG content (p < 0.05). Dietary supplementation with AEO improved apparent digestibility of crude ash and calcium (p < 0.05). In gut microbiota, AEO modified the diversity and abundance of bacterial communities in fattening pigs. The abundance of Dorea, Blautia, Butyricicoccus, Bulleidia, and Lactobacillus was higher in the AEO groups compared to the control group, while Clostridium and Turicibacter were lower. The Bifidobacteriales and Pseudomonas were abundant in group AEO1 and AEO3, respectively. In conclusion, dietary supplementation of 1,000 mg/kg AEO has the potential to improve growth performance, immunological, biochemical, and antioxidant statuses. Additionally, AEO can increase the efficiency of nutrient digestion and absorption through the regulation of gut microbiota.
Collapse
Affiliation(s)
- Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Zhimou Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Hunan Nuoz Biological Technology Co., Ltd., Yiyang, Hunan, China
| | - Chun Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jieyi He
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Jiayi Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Kaiqiang Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xu Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiajia He
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Zhenyi Liu
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Hui Yang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Kelang Kang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Qian Lin
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
2
|
Peng S, Liao L, Deng H, Liu X, Lin Q, Wu W. Alleviating Effect of Lipid Phytochemicals in Seed Oil ( Brassica napus L.) on Oxidative Stress Injury Induced by H 2O 2 in HepG2 Cells via Keap1/Nrf2/ARE Signaling Pathway. Nutrients 2024; 16:2820. [PMID: 39275137 PMCID: PMC11396941 DOI: 10.3390/nu16172820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
α-tocopherol (α-T), β-sitosterol (β-S), canolol (CA), and sinapic acid (SA) are the four main endogenous lipid phytochemicals (LP) found in Brassica napus L. seed oil, which possess the bioactivity to prevent the risk of several chronic diseases via antioxidant-associated mechanisms. Discovering the enhancer effects or synergies between LP is valuable for resisting oxidative stress and improving health benefits. The objectives of this study were to identify a potentially efficacious LP combination by central composite design (CCD) and cellular antioxidant activity (CAA) and to investigate its protective effect and potential mechanisms against H2O2-induced oxidative damage in HepG2 cells. Our results indicated that the optimal concentration of LP combination was α-T 10 μM, β-S 20 μM, SA 125 μM, and CA 125 μM, respectively, and its CAA value at the optimal condition was 10.782 μmol QE/100 g. At this concentration, LP combination exerted a greater amelioration effect on H2O2-induced HepG2 cell injury than either antioxidant (tea polyphenols or magnolol) alone. LP combination could reduce the cell apoptosis rate induced by H2O2, lowered to 10.06%, and could alleviate the degree of oxidative damage to cells (ROS↓), lipids (MDA↓), proteins (PC↓), and DNA (8-OHdG↓). Additionally, LP combination enhanced the antioxidant enzyme activities (SOD, CAT, GPX, and HO-1), as well as the T-AOC, and increased the GSH level in HepG2 cells. Furthermore, LP combination markedly upregulated the expression of Nrf2 and its associated antioxidant proteins. It also increased the expression levels of Nrf2 downstream antioxidant target gene (HO-1, SOD-1, MnSOD, CAT, GPX-1, and GPX-4) and downregulated the mRNA expression levels of Keap1. The oxidative-stress-induced formation of the Keap1/Nrf2 complex in the cytoplasm was significantly blocked by LP treatment. These results indicate that LP combination protected HepG2 cells from oxidative stress through a mechanism involving the activation of the Keap1/Nrf2/ARE signaling pathways.
Collapse
Affiliation(s)
- Simin Peng
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China;
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.L.)
| | - Luyan Liao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.L.)
| | - Huiqing Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.L.)
| | - Xudong Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410018, China
| | - Qian Lin
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China;
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410125, China
| | - Weiguo Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.L.)
| |
Collapse
|
3
|
Ota H, Tobino K. Acute Lung Injury Caused by Mugwort Steaming. Cureus 2024; 16:e66229. [PMID: 39238699 PMCID: PMC11374742 DOI: 10.7759/cureus.66229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Mugwort steaming is a traditional health practice with reported biological benefits, but its potential adverse effects on lung health remain unexplored. We report a case of a 48-year-old Japanese female who developed recurrent respiratory symptoms and abnormal lung shadows following occupational exposure to mugwort steaming. Initial diagnosis suggested nonfibrotic hypersensitivity pneumonitis. However, transbronchial lung cryobiopsy revealed findings consistent with acute lung injury (ALI). Multi-disciplinary discussion led to a final diagnosis of ALI caused by mugwort steaming. The patient's condition improved when mugwort steaming was discontinued. This case represents the first reported instance of ALI associated with mugwort steaming. It highlights the need for caution in traditional practices and emphasizes the importance of considering unconventional exposures in unexplained lung pathologies. Further research is warranted to establish the safety profile and potential risks of mugwort steaming.
Collapse
Affiliation(s)
- Hiroaki Ota
- Respiratory Medicine, Iizuka Hospital, Iizuka, JPN
| | | |
Collapse
|
4
|
Cheng M, Shi Y, Cheng Y, Hu H, Liu S, Xu Y, He L, Hu S, Lu Y, Chen F, Li J, Si H. Mulberry leaf polysaccharide improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora, enhancing immune regulation and antioxidant capacity. Front Microbiol 2024; 15:1382639. [PMID: 38577686 PMCID: PMC10991686 DOI: 10.3389/fmicb.2024.1382639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Polysaccharides are generally considered to have immune enhancing functions, and mulberry leaf polysaccharide is the main active substance in mulberry leaves, while there are few studies on whether mulberry leaf polysaccharide (MLP) has an effect on immunosuppression and intestinal damage caused by cyclophosphamide (CTX), we investigated whether MLP has an ameliorative effect on intestinal damage caused by CTX. A total of 210 1-day-old Mahuang cocks were selected for this experiment. Were equally divided into six groups and used to evaluate the immune effect of MLP. Our results showed that MLP significantly enhanced the growth performance of chicks and significantly elevated the secretion of cytokines (IL-1β, IL-10, IL-6, TNF-α, and IFN-γ), immunoglobulins and antioxidant enzymes in the serum of immunosuppressed chicks. It attenuated jejunal damage and elevated the expression of jejunal tight junction proteins Claudin1, Zo-1 and MUC2, which protected intestinal health. MLP activated TLR4-MyD88-NF-κB pathway and enhanced the expression of TLR4, MyD88 and NF-κB, which served to protect the intestine. 16S rDNA gene high-throughput sequencing showed that MLP increased species richness, restored CTX-induced gut microbiome imbalance, and enhanced the abundance of probiotic bacteria in the gut. MLP improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora and enhancing immune regulation and antioxidant capacity. In conclusion, this study provides a scientific basis for MLP as an immune enhancer to regulate chick intestinal flora and protect chick intestinal mucosal damage.
Collapse
Affiliation(s)
- Ming Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yongbin Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yumeng Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Song Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yanping Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Lingzhi He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Shanshan Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Fengmin Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Jiang Li
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Fan S, Zheng M, Ren A, Mao H, Long D, Yang L. Effects of High-Concentrate-Induced SARA on Antioxidant Capacity, Immune Levels and Rumen Microbiota and Function in Goats. Animals (Basel) 2024; 14:263. [PMID: 38254432 PMCID: PMC10812789 DOI: 10.3390/ani14020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
This study aims to explore the antioxidant, immune, and enzyme metabolism aspects in goats experiencing subacute ruminal acidosis (SARA). Furthermore, we seek to elucidate the relationship between the symbiotic microbiota of goats and their metabolic function. Sixteen goats were equally divided into two groups and fed a normal-concentrate diet (NC, 55% concentrate) or a high-concentrate diet (HC, 90% concentrate) for five weeks. We found that the HC diet reduced the total antioxidant capacity (T-AOC) (p = 0.022) and increased interleukin-1β (IL-1β) (p = 0.015), interleukin-4 (IL-4) (p = 0.008) and interleukin-6 (IL-6) (p = 0.002) concentration of goats. Simultaneously, the HC diet significantly increased the concentrations of alkaline phosphatase (ALP) and amylase (AMY) in the blood and rumen fluid of goats (p < 0.05). Microbial analysis in the rumen of goats revealed that the HC diet decreased bacterial richness and diversity, as evidenced by the changed observed species, Chao 1, PD whole tree and Shannon when compared to the NC diet (p < 0.01). The proportion of Proteobacteria increased while that of Spirochaetes and Fibrobacteres significantly decreased with the HC diet (p < 0.05). The Christensenellaceae_R-7_group and Ruminococcaceae_UCG-010 in rumen was notably decreased when a diet was switched from 55% concentrate diet to 90% concentrate diet (p < 0.05). Additionally, microbial functional potentials deduced that the HC diet significantly increased the abundance of the citrate cycle (TCA cycle) (ko00020) associated with carbohydrate metabolism (p = 0.028). Furthermore, the HC diet significantly increased the glutathione metabolism (ko00480) associated with the metabolism of other amino acids (p = 0.008). Our findings suggested that SARA reduced the total antioxidant capacity and increased levels of inflammatory factors in goats, as well as decreased rumen bacterial species and abundance.
Collapse
Affiliation(s)
| | | | | | | | | | - Lingyuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China; (S.F.); (D.L.)
| |
Collapse
|
6
|
Wang K, Ma J, Li Y, Han Q, Yin Z, Zhou M, Luo M, Chen J, Xia S. Effects of essential oil extracted from Artemisia argyi leaf on lipid metabolism and gut microbiota in high-fat diet-fed mice. Front Nutr 2022; 9:1024722. [PMID: 36407543 PMCID: PMC9670120 DOI: 10.3389/fnut.2022.1024722] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/20/2023] Open
Abstract
Artemisia argyi leaf is a well-known species in traditional Chinese medicine, and its essential oil (AAEO) has been identified to exert various physiological activities. The aim of this study was to investigate the effects of AAEO on lipid metabolism and the potential microbial role in high-fat diet (HFD)-fed mice. A total of 50 male mice were assigned to five groups for feeding with a control diet (Con), a high-fat diet (HFD), and the HFD plus the low (LEO), medium (MEO), and high (HEO) doses of AAEO. The results demonstrated that dietary HFD markedly increased the body weight gain compared with the control mice (p < 0.05), while mice in the HEO group showed a lower body weight compared to the HFD group (p < 0.05). The weight of fatty tissues and serum lipid indexes (TBA, HDL, and LDL levels) were increased in response to dietary HFD, while there was no significant difference in AAEO-treated mice (p < 0.05). The jejunal villus height was dramatically decreased in HFD-fed mice compared with the control mice, while HEO resulted in a dramatically higher villus height than that in the HFD group (p < 0.05). Microbial α-diversity was not changed in this study, but β-diversity indicated that microbial compositions differed in control, HFD, and EO subjects. At the genus level, the relative abundance of Bacteroides was greater (p < 0.05) in the feces of the Con group when compared to the HFD and EO groups. On the contrary, the abundance of Muribaculum was lower in the Con group compared to the HFD and EO groups (p < 0.05). Although the Muribaculum in the EO group was lower than that in the HFD group, there was no statistically notable difference between the HFD and EO groups (p > 0.05). Simultaneously, the relative abundance of Alistipes (p < 0.05) and Rikenella (p < 0.05) was also dramatically higher in the Con group than in the HFD and EO groups. The abundance of norank_f__norank_o__Clostridia_UCG-014 was lower in the HFD or EO group than in the Con group (p < 0.05). In conclusion, the results suggested that HEO could affect body weight and lipid metabolism without gut microbes in ICR mice, and it was beneficial for the structure of the jejunal epithelial tissue.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yunxia Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qi Han
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhangzheng Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Minyi Luo
- Agricultural Service Center, Xiaolan Town, Zhongshan, Guangdong, China
| | - Jiayi Chen
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Siting Xia
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
7
|
Albaqami JJ, Benny TP, Hamdi H, Altemimi AB, Kuttithodi AM, Job JT, Sasidharan A, Narayanankutty A. Phytochemical Composition and In Vitro Antioxidant, Anti-Inflammatory, Anticancer, and Enzyme-Inhibitory Activities of Artemisia nilagirica (C.B. Clarke) Pamp. Molecules 2022; 27:7119. [PMID: 36296712 PMCID: PMC9611367 DOI: 10.3390/molecules27207119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
Plants have been employed in therapeutic applications against various infectious and chronic diseases from ancient times. Various traditional medicines and folk systems have utilized numerous plants and plant products, which act as sources of drug candidates for modern medicine. Artemisia is a genus of the Asteraceae family with more than 500 species; however, many of these species are less explored for their biological efficacy, and several others are lacking scientific explanations for their uses. Artemisia nilagirica is a plant that is widely found in the Western Ghats, Kerala, India and is a prominent member of the genus. In the current study, the phytochemical composition and the antioxidant, enzyme-inhibitory, anti-inflammatory, and anticancer activities were examined. The results indicated that the ethanol extract of A. nilagirica indicated in vitro DPPH scavenging (23.12 ± 1.28 µg/mL), ABTS scavenging (27.44 ± 1.88 µg/mL), H2O2 scavenging (12.92 ± 1.05 µg/mL), and FRAP (5.42 ± 0.19 µg/mL). The anti-inflammatory effect was also noticed in the Raw 264.7 macrophages, where pretreatment with the extract reduced the LPS-stimulated production of cytokines (p < 0.05). A. nilagirica was also efficient in inhibiting the activities of α-amylase (38.42 ± 2.71 µg/mL), α-glucosidase (55.31 ± 2.16 µg/mL), aldose reductase (17.42 ± 0.87 µg/mL), and sorbitol dehydrogenase (29.57 ± 1.46 µg/mL). It also induced significant inhibition of proliferation in breast (MCF7 IC50 = 41.79 ± 1.07, MDAMB231 IC50 = 55.37 ± 2.11µg/mL) and colon (49.57 ± 1.46 µg/mL) cancer cells. The results of the phytochemical screening indicated a higher level of polyphenols and flavonoids in the extract and the LCMS analysis revealed the presence of various bioactive constituents including artemisinin.
Collapse
Affiliation(s)
- Jawaher J. Albaqami
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tancia P. Benny
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Hamida Hamdi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Aswathi Moothakoottil Kuttithodi
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Joice Tom Job
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Anju Sasidharan
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| |
Collapse
|