1
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
2
|
Katari V, Pasupuleti SK, Mullick M, Lekkala VKR, Sen D. Editorial: Advanced neural stem cell therapies for spinal cord injury. Front Pharmacol 2024; 15:1469535. [PMID: 39166116 PMCID: PMC11333316 DOI: 10.3389/fphar.2024.1469535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Affiliation(s)
- Venkatesh Katari
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| | - Santhosh Kumar Pasupuleti
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Madhubanti Mullick
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Vinod Kumar Reddy Lekkala
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Dwaipayan Sen
- Cell And Gene Therapies, Innovative Medicines Accelerator (IMA), Stanford University, Palo Alto, CA, United States
| |
Collapse
|
3
|
Sands I, Demarco R, Thurber L, Esteban-Linares A, Song D, Meng E, Chen Y. Interface-Mediated Neurogenic Signaling: The Impact of Surface Geometry and Chemistry on Neural Cell Behavior for Regenerative and Brain-Machine Interfacing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401750. [PMID: 38961531 PMCID: PMC11326983 DOI: 10.1002/adma.202401750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Nanomaterial advancements have driven progress in central and peripheral nervous system applications such as tissue regeneration and brain-machine interfacing. Ideally, neural interfaces with native tissue shall seamlessly integrate, a process that is often mediated by the interfacial material properties. Surface topography and material chemistry are significant extracellular stimuli that can influence neural cell behavior to facilitate tissue integration and augment therapeutic outcomes. This review characterizes topographical modifications, including micropillars, microchannels, surface roughness, and porosity, implemented on regenerative scaffolding and brain-machine interfaces. Their impact on neural cell response is summarized through neurogenic outcome and mechanistic analysis. The effects of surface chemistry on neural cell signaling with common interfacing compounds like carbon-based nanomaterials, conductive polymers, and biologically inspired matrices are also reviewed. Finally, the impact of these extracellular mediated neural cues on intracellular signaling cascades is discussed to provide perspective on the manipulation of neuron and neuroglia cell microenvironments to drive therapeutic outcomes.
Collapse
Affiliation(s)
- Ian Sands
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ryan Demarco
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Laura Thurber
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Alberto Esteban-Linares
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
4
|
Alkahtani ME, Elbadawi M, Chapman CAR, Green RA, Gaisford S, Orlu M, Basit AW. Electroactive Polymers for On-Demand Drug Release. Adv Healthc Mater 2024; 13:e2301759. [PMID: 37861058 PMCID: PMC11469020 DOI: 10.1002/adhm.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/16/2023] [Indexed: 10/21/2023]
Abstract
Conductive materials have played a significant role in advancing society into the digital era. Such materials are able to harness the power of electricity and are used to control many aspects of daily life. Conductive polymers (CPs) are an emerging group of polymers that possess metal-like conductivity yet retain desirable polymeric features, such as processability, mechanical properties, and biodegradability. Upon receiving an electrical stimulus, CPs can be tailored to achieve a number of responses, such as harvesting energy and stimulating tissue growth. The recent FDA approval of a CP-based material for a medical device has invigorated their research in healthcare. In drug delivery, CPs can act as electrical switches, drug release is achieved at a flick of a switch, thereby providing unprecedented control over drug release. In this review, recent developments in CP as electroactive polymers for voltage-stimuli responsive drug delivery systems are evaluated. The review demonstrates the distinct drug release profiles achieved by electroactive formulations, and both the precision and ease of stimuli response. This level of dynamism promises to yield "smart medicines" and warrants further research. The review concludes by providing an outlook on electroactive formulations in drug delivery and highlighting their integral roles in healthcare IoT.
Collapse
Affiliation(s)
- Manal E. Alkahtani
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- Department of PharmaceuticsCollege of PharmacyPrince Sattam bin Abdulaziz UniversityAlkharj11942Saudi Arabia
| | - Moe Elbadawi
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Christopher A. R. Chapman
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
- Centre for Bioengineering, School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Rylie A. Green
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Simon Gaisford
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Mine Orlu
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Abdul W. Basit
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| |
Collapse
|
5
|
Bianchi M, Guzzo S, Lunghi A, Greco P, Pisciotta A, Murgia M, Carnevale G, Fadiga L, Biscarini F. Synergy of Nanotopography and Electrical Conductivity of PEDOT/PSS for Enhanced Neuronal Development. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59224-59235. [PMID: 38091494 PMCID: PMC10755694 DOI: 10.1021/acsami.3c15278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Biomaterials able to promote neuronal development and neurite outgrowth are highly desired in neural tissue engineering for the repair of damaged or disrupted neural tissue and restoring the axonal connection. For this purpose, the use of either electroactive or micro- and nanostructured materials has been separately investigated. Here, the use of a nanomodulated conductive poly(3,4-ethylendioxithiophene) poly(styrenesulfonate) (PEDOT/PSS) substrate that exhibits instructive topographical and electrical cues at the same time was investigated for the first time. In particular, thin films featuring grooves with sizes comparable with those of neuronal neurites (NanoPEDOT) were fabricated by electrochemical polymerization of PEDOT/PSS on a nanomodulated polycarbonate template. The ability of NanoPEDOT to support neuronal development and direct neurite outgrowth was demonstrated by assessing cell viability and proliferation, expression of neuronal markers, average neurite length, and direction of neuroblastoma N2A cells induced to differentiate on this novel support. In addition to the beneficial effect of the nanogrooved topography, a 30% increase was shown in the average length of neurites when differentiating cells were subjected to an electrical stimulation of a few microamperes for 6 h. The results reported here suggest a favorable effect on the neuronal development of the synergistic combination of nanotopography and electrical stimulation, supporting the use of NanoPEDOT in neural tissue engineering to promote physical and functional reconnection of impaired neural networks.
Collapse
Affiliation(s)
- Michele Bianchi
- Department
of Life Sciences, Università degli
Studi di Modena e Reggio Emilia, 44125 Modena, Italy
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Sonia Guzzo
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section
of Physiology, Università di Ferrara, 44121 Ferrara, Italy
| | - Alice Lunghi
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section
of Physiology, Università di Ferrara, 44121 Ferrara, Italy
| | - Pierpaolo Greco
- Section
of Physiology, Università di Ferrara, 44121 Ferrara, Italy
| | - Alessandra Pisciotta
- Department
of Surgery, Medicine, Dentistry and Morphological Sciences with Interest
in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 44125 Modena, Italy
| | - Mauro Murgia
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN-CNR), 40129 Bologna, Italy
| | - Gianluca Carnevale
- Department
of Surgery, Medicine, Dentistry and Morphological Sciences with Interest
in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 44125 Modena, Italy
| | - Luciano Fadiga
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section
of Physiology, Università di Ferrara, 44121 Ferrara, Italy
| | - Fabio Biscarini
- Department
of Life Sciences, Università degli
Studi di Modena e Reggio Emilia, 44125 Modena, Italy
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Pisciotta A, Di Tinco R, Bertani G, Orlandi G, Bertoni L, Pignatti E, Orciani M, Sena P, Bertacchini J, Salvarani C, Carnevale G. Human dental pulp stem cells (hDPSCs) promote the lipofibroblast transition in the early stage of a fibro-inflammatory process. Front Cell Dev Biol 2023; 11:1196023. [PMID: 37206922 PMCID: PMC10189147 DOI: 10.3389/fcell.2023.1196023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction: In autoimmune diseases, particularly in systemic sclerosis and chronic periaortitis, a strict correlation between chronic inflammation and fibrosis exists. Since the currently used drugs prove mostly effective in suppressing inflammation, a better comprehension of the molecular mechanisms exerted by cell types implicated in fibro-inflammation is needed to develop novel therapeutic strategies. Mesenchymal stromal/stem cells (MSCs) are being matter of deep investigation to unveil their role in the evolution of fibrogenetic process. Several findings pointed out the controversial implication of MSCs in these events, with reports lining at a beneficial effect exerted by external MSCs and others highlighting a direct contribution of resident MSCs in fibrosis progression. Human dental pulp stem cells (hDPSCs) have demonstrated to hold promise as potential therapeutic tools due to their immunomodulatory properties, which strongly support their contribution to tissue regeneration. Methods: Our present study evaluated hDPSCs response to a fibro-inflammatory microenvironment, mimicked in vitro by a transwell co-culture system with human dermal fibroblasts, at early and late culture passages, in presence of TGF-β1, a master promoter of fibrogenesis. Results and Discussion: We observed that hDPSCs, exposed to acute fibro-inflammatory stimuli, promote a myofibroblast-to-lipofibroblast transition, likely based on BMP2 dependent pathways. Conversely, when a chronic fibro-inflammatory microenvironment is generated, hDPSCs reduce their anti-fibrotic effect and acquire a pro-fibrotic phenotype. These data provide the basis for further investigations on the response of hDPSCs to varying fibro-inflammatory conditions.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Alessandra Pisciotta,
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Pignatti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|