1
|
Schwartz LA, Norman JO, Hasan S, Adamek OE, Dzuong E, Lowenstein JC, Yost OG, Sankaran B, McLaughlin KJ. Carbohydrate Deacetylase Unique to Gut Microbe Bacteroides Reveals Atypical Structure. Biochemistry 2024. [PMID: 39663570 DOI: 10.1021/acs.biochem.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Bacteroides are often the most abundant, commensal species in the gut microbiome of industrialized human populations. One of the most commonly detected species is Bacteroides ovatus. It has been linked to benefits like the suppression of intestinal inflammation but is also correlated with some autoimmune disorders, for example irritable bowel disorder (IBD). Bacterial cell surface carbohydrates, like capsular polysaccharides (CPS), may play a role in modulating these varied host interactions. Recent studies have begun to explore the diversity of CPS loci in Bacteroides; however, there is still much unknown. Here, we present structural and functional characterization of a putative polysaccharide deacetylase from Bacteroides ovatus (BoPDA) encoded in a CPS biosynthetic locus. We solved four high resolution crystal structures (1.36-1.56 Å) of the enzyme bound to divalent cations Co2+, Ni2+, Cu2+, or Zn2+ and performed carbohydrate binding and deacetylase activity assays. Structural analysis of BoPDA revealed an atypical domain architecture that is unique to this enzyme, with a carbohydrate esterase 4 (CE4) superfamily catalytic domain inserted into a carbohydrate binding module (CBM). Additionally, BoPDA lacks the canonical CE4 His-His-Asp metal binding motif and our structures show it utilizes a noncanonical His-Asp dyad to bind metal ions. BoPDA is the first protein involved in CPS biosynthesis from B. ovatus to be characterized, furthering our understanding of significant biosynthetic processes in this medically relevant gut microbe.
Collapse
Affiliation(s)
- Lilith A Schwartz
- Department of Chemistry, Vassar College, 124 Raymond Ave, Poughkeepsie, New York 12604, United States
| | - Jordan O Norman
- Biochemistry Program, Vassar College, 124 Raymond Ave, Poughkeepsie, New York 12604, United States
| | - Sharika Hasan
- Biochemistry Program, Vassar College, 124 Raymond Ave, Poughkeepsie, New York 12604, United States
| | - Olive E Adamek
- Biochemistry Program, Vassar College, 124 Raymond Ave, Poughkeepsie, New York 12604, United States
| | - Elisa Dzuong
- Department of Chemistry, Vassar College, 124 Raymond Ave, Poughkeepsie, New York 12604, United States
| | - Jasmine C Lowenstein
- Department of Chemistry, Vassar College, 124 Raymond Ave, Poughkeepsie, New York 12604, United States
| | - Olivia G Yost
- Biochemistry Program, Vassar College, 124 Raymond Ave, Poughkeepsie, New York 12604, United States
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Krystle J McLaughlin
- Department of Chemistry, Vassar College, 124 Raymond Ave, Poughkeepsie, New York 12604, United States
- Biochemistry Program, Vassar College, 124 Raymond Ave, Poughkeepsie, New York 12604, United States
| |
Collapse
|
2
|
Pradhan S, Mirdha L, Sengupta T, Chakraborty H. Implications of the Lipidic Ecosystem for the Membrane Binding of ApoE Signal Peptide: Importance of Sphingomyelin. Chembiochem 2024; 25:e202400469. [PMID: 39444133 DOI: 10.1002/cbic.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Indexed: 10/25/2024]
Abstract
The unidirectional movement of nascent secretory proteins in the cell is primarily assisted by the signal recognition particles (SRP). However, this does not completely justify the importance of the signal peptide (SP) which gets eliminated after the protein translocation. We have earlier demonstrated that a negatively charged lipid such as POPG plays an important role in the higher binding affinity and cholesterol-discriminating ability of the apolipoprotein E (ApoE) SP. In this present work, we aimed to understand the role of sphingomyelin, an important constituent of ER, on the membrane binding of ApoE SP. Our results demonstrate that sphingomyelin promotes membrane binding but cannot discriminate cholesterol. However, sphingomyelin shows a synergistic effect with POPG toward the membrane binding of the ApoE SP. We have further shown that the membrane domains do not have any impact on the binding of ApoE SP. Based on our results we propose that the lipid composition of the endoplasmic reticulum (ER) where ApoE translocates, enhances the binding of the ApoE signal peptide to the ER membrane.
Collapse
Affiliation(s)
- Sasmita Pradhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | - Lipika Mirdha
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | - Tanusree Sengupta
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| |
Collapse
|
3
|
Ana Y, Gerngross D, Serrano L. Heterologous protein exposure and secretion optimization in Mycoplasma pneumoniae. Microb Cell Fact 2024; 23:306. [PMID: 39533283 PMCID: PMC11558893 DOI: 10.1186/s12934-024-02574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The non-pathogenic Mycoplasma pneumoniae engineered chassis (Mycochassis) has demonstrated the ability to express therapeutic molecules in vitro and to be effective for treatment of lung infectious diseases in in vivo mouse models. However, the expression of heterologous molecules, whether secreted or exposed on the bacterial membrane has not been optimized to ensure sufficient secretion and/or exposure levels to exert a maximum in vivo biological effect. Here, we have improved the currently used secretion signal from MPN142 protein. We found that mutations at P1' position of the signal peptide cleavage site do not abrogate secretion but affect it. Increasing hydrophobicity and mutations at the C-terminal of the signal peptide increases secretion. We tested different lipoprotein signal peptides as possible N-terminal protein anchoring motifs on the Mpn cell surface. Unexpectedly we found that these peptides exhibit variable retention and secretion rates of the protein, with some sequences behaving as full secretion motifs. This raises the question of the biological role of the lipobox motif traditionally thought to anchor membrane proteins without a helical transmembrane domain. These results altogether represent a step forward in chassis optimization, offering different sequences for secretion or membrane retention, which could be used to improve Mycochassis as a delivery vector, and broadening its therapeutic possibilities.
Collapse
Affiliation(s)
- Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Daniel Gerngross
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Lab Automation Facility, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
4
|
Hartmann FSF, Grégoire M, Renzi F, Delvigne F. Single cell technologies for monitoring protein secretion heterogeneity. Trends Biotechnol 2024; 42:1144-1160. [PMID: 38480024 DOI: 10.1016/j.tibtech.2024.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 09/07/2024]
Abstract
Cell-to-cell heterogeneity presents challenges across various fields, from biomedicine to bioproduction, where precise cellular responses are vital. While single cell technologies have significantly enhanced our understanding of population heterogeneity, the predominant focus has been on monitoring intracellular compounds. Recognizing the added complexity introduced by the secretion system, in this review, we first provide a systematic overview of the distinct steps necessary for driving protein secretion. We discuss the various sources of noise acting from the synthesized preprotein to the secretory protein released based on a Gram-positive cellular system as a model. We next explore the applicability of single cell technologies for monitoring protein secretion throughout these functional stages. We also emphasize the importance of applying these single cell technologies for monitoring protein secretion during bioproduction.
Collapse
Affiliation(s)
- Fabian Stefan Franz Hartmann
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mélanie Grégoire
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Francesco Renzi
- Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
5
|
Burcham ZM. Comparative genomic analysis of an emerging Pseudomonadaceae member, Thiopseudomonas alkaliphila. Microbiol Spectr 2024; 12:e0415723. [PMID: 38934605 PMCID: PMC11302033 DOI: 10.1128/spectrum.04157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Thiopseudomonas alkaliphila, an organism recently classified within the Pseudomonadaceae family, has been detected in diverse sources such as human tissues, animal guts, industrial fermenters, and decomposition environments, suggesting a diverse ecological role. However, a large knowledge gap exists in how T. alkaliphila functions. In this comparative genomic analysis, adaptations indicative of habitat specificity among strains and genomic similarity to known opportunistic pathogens are revealed. Genomic investigation reveals a core metabolic utilization of multiple oxidative and non-oxidative catabolic pathways, suggesting adaptability to varied environments and carbon sources. The genomic repertoire of T. alkaliphila includes secondary metabolites, such as antimicrobials and siderophores, indicative of its involvement in microbial competition and resource acquisition. Additionally, the presence of transposases, prophages, plasmids, and Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems in T. alkaliphila genomes suggests mechanisms for horizontal gene transfer and defense against viral predation. This comprehensive genomic analysis expands our understanding on the ecological functions, community interactions, and potential virulence of T. alkaliphila, while emphasizing its adaptability and diverse capabilities across environmental and host-associated ecosystems.IMPORTANCEAs the microbial world continues to be explored, new organisms will emerge with beneficial and/or pathogenetic impact. Thiopseudomonas alkaliphila is a species originally isolated from clinical human tissue and fluid samples but has not been attributed to disease. Since its classification, T. alkaliphila has been found in animal guts, animal waste, decomposing remains, and biogas fermentation reactors. This is the first study to provide an in-depth view of the metabolic potential of publicly available genomes belonging to this species through a comparative genomics and draft pangenome calculation approach. It was found that T. alkaliphila is metabolically versatile and likely adapts to diverse energy sources and environments, which may make it useful for bioremediation and in industrial settings. A range of virulence factors and antibiotic resistances were also detected, suggesting T. alkaliphila may operate as an undescribed opportunistic pathogen.
Collapse
Affiliation(s)
- Zachary M. Burcham
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Torres-Puig S, Crespo-Pomar S, Akarsu H, Yimthin T, Cippà V, Démoulins T, Posthaus H, Ruggli N, Kuhnert P, Labroussaa F, Jores J. Functional surface expression of immunoglobulin cleavage systems in a candidate Mycoplasma vaccine chassis. Commun Biol 2024; 7:779. [PMID: 38942984 PMCID: PMC11213901 DOI: 10.1038/s42003-024-06497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
The Mycoplasma Immunoglobulin Binding/Protease (MIB-MIP) system is a candidate 'virulence factor present in multiple pathogenic species of the Mollicutes, including the fast-growing species Mycoplasma feriruminatoris. The MIB-MIP system cleaves the heavy chain of host immunoglobulins, hence affecting antigen-antibody interactions and potentially facilitating immune evasion. In this work, using -omics technologies and 5'RACE, we show that the four copies of the M. feriruminatoris MIB-MIP system have different expression levels and are transcribed as operons controlled by four different promoters. Individual MIB-MIP gene pairs of M. feriruminatoris and other Mollicutes were introduced in an engineered M. feriruminatoris strain devoid of MIB-MIP genes and were tested for their functionality using newly developed oriC-based plasmids. The two proteins are functionally expressed at the surface of M. feriruminatoris, which confirms the possibility to display large membrane-associated proteins in this bacterium. However, functional expression of heterologous MIB-MIP systems introduced in this engineered strain from phylogenetically distant porcine Mollicutes like Mesomycoplasma hyorhinis or Mesomycoplasma hyopneumoniae could not be achieved. Finally, since M. feriruminatoris is a candidate for biomedical applications such as drug delivery, we confirmed its safety in vivo in domestic goats, which are the closest livestock relatives to its native host the Alpine ibex.
Collapse
Affiliation(s)
- Sergi Torres-Puig
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.
| | - Silvia Crespo-Pomar
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Hatice Akarsu
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Thatcha Yimthin
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Valentina Cippà
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Thomas Démoulins
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Horst Posthaus
- Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Nicolas Ruggli
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Schweiz
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Fabien Labroussaa
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, 3001, Bern, Switzerland
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Lyon Laboratory, VetAgro Sup, UMR Animal Mycoplasmosis, University of Lyon, Lyon, France
| | - Jörg Jores
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, 3001, Bern, Switzerland.
| |
Collapse
|
7
|
Zhang M, Zhen J, Teng J, Zhao X, Fu X, Song H, Zhang Y, Zheng H, Bai W. N-Terminal Sequences of Signal Peptides Assuming Critical Roles in Expression of Heterologous Proteins in Bacillus subtilis. Microorganisms 2024; 12:1275. [PMID: 39065044 PMCID: PMC11278945 DOI: 10.3390/microorganisms12071275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The N-terminal sequences of proteins and their corresponding encoding sequences may play crucial roles in the heterologous expression. In this study, the secretory expression of alkaline pectin lyase APL in B. subtilis was investigated to explore the effects of the N-terminal 5-7 amino acid sequences of different signal peptides on the protein expression and secretion. It was identified for the first time that the first five amino acid sequences of the N-terminal of the signal peptide (SP-LipA) from Bacillus subtilis lipase A play an important role in promoting the expression of APL. Furthermore, it was revealed that SP-LipA resulted in higher secretory expression compared to other signal peptides in this study primarily due to its encoding of N-terminal amino acids with relatively higher transcription levels and its efficient secretion capacity. Based on this foundation, the recombinant strain constructed in this work achieved a new record for the highest extracellular yields of APL in B. subtilis, reaching 12,295 U/mL, which was 1.9-times higher than that expressed in the recombinant Escherichia coli strain previously reported. The novel theories uncovered in this study are expected to play significant roles in enhancing the expression of foreign proteins both inside and outside of cells.
Collapse
Affiliation(s)
- Meijuan Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China;
| | - Jie Zhen
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jia Teng
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300392, China;
| | - Xingya Zhao
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaoping Fu
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Hui Song
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yeni Zhang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300392, China;
| | - Hongchen Zheng
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenqin Bai
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
8
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
9
|
Chen Y, Li M, Yan M, Chen Y, Saeed M, Ni Z, Fang Z, Chen H. Bacillus subtilis: current and future modification strategies as a protein secreting factory. World J Microbiol Biotechnol 2024; 40:195. [PMID: 38722426 DOI: 10.1007/s11274-024-03997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.
Collapse
Affiliation(s)
- Yanzhen Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Miaomiao Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yong Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhen Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
10
|
Morgan CJ, Enustun E, Armbruster EG, Birkholz EA, Prichard A, Forman T, Aindow A, Wannasrichan W, Peters S, Inlow K, Shepherd IL, Razavilar A, Chaikeeratisak V, Adler BA, Cress BF, Doudna JA, Pogliano K, Villa E, Corbett KD, Pogliano J. An essential and highly selective protein import pathway encoded by nucleus-forming phage. Proc Natl Acad Sci U S A 2024; 121:e2321190121. [PMID: 38687783 PMCID: PMC11087766 DOI: 10.1073/pnas.2321190121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here, we identify two components of this protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA (Protein importer of chimalliviruses A), that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together, our results allow us to propose a multistep model for the Protein Import Chimallivirus pathway, where proteins are targeted to PicA by amino acids on their surface and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts.
Collapse
Affiliation(s)
- Chase J. Morgan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Eray Enustun
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Emily G. Armbruster
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Erica A. Birkholz
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Amy Prichard
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Taylor Forman
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Ann Aindow
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Wichanan Wannasrichan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| | - Sela Peters
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Koe Inlow
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Isabelle L. Shepherd
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Alma Razavilar
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| | - Benjamin A. Adler
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Brady F. Cress
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jennifer A. Doudna
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Kit Pogliano
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Elizabeth Villa
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- HHMI, University of California San Diego, La Jolla, CA92093
| | - Kevin D. Corbett
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Joe Pogliano
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
11
|
Pradhan S, Mirdha L, Sengupta T, Chakraborty H. Phosphatidylglycerol Acts as a Switch for Cholesterol-Dependent Membrane Binding of ApoE Signal Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8126-8132. [PMID: 38568020 DOI: 10.1021/acs.langmuir.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The apolipoprotein E (ApoE) signal peptide is a short stretch of N-terminal amino acids that direct the ApoE protein to the endoplasmic reticulum after synthesis. Previous studies have shown that this peptide can bind to lipid membranes in a cholesterol-dependent manner; however, the mechanism of this interaction is yet to be clarified. In this study, we aimed to investigate how the composition of neighboring lipids affects the membrane-binding of the ApoE signal peptide. We found that a negatively charged lipid, such as phosphatidylglycerol, can act as a switch that reduces the binding efficiency of the peptide to cholesterol-rich membranes. Interestingly, phosphatidylethanolamine does not activate the cholesterol-dependent binding of the ApoE signal peptide yet acts synergistically to enhance the cholesterol sensitivity in phosphatidylglycerol-containing membranes. To the best of our knowledge, this is the first report of modulation of the affinity of a peptide for a membrane by a neighboring lipid rather than by the lipid-binding domain of the peptide. Our findings revealed a novel role of lipid diversity in modulating the membrane binding of the ApoE signal peptide and its potential implications in the unidirectional trafficking of a newly synthesized protein from the ribosomes to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sasmita Pradhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Lipika Mirdha
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Tanusree Sengupta
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
12
|
Morgan CJ, Enustun E, Armbruster EG, Birkholz EA, Prichard A, Forman T, Aindow A, Wannasrichan W, Peters S, Inlow K, Shepherd IL, Razavilar A, Chaikeeratisak V, Adler BA, Cress BF, Doudna JA, Pogliano K, Villa E, Corbett KD, Pogliano J. An essential and highly selective protein import pathway encoded by nucleus-forming phage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.585822. [PMID: 38562762 PMCID: PMC10983916 DOI: 10.1101/2024.03.21.585822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here we identify two components of this novel protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA, that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together our results allow us to propose a multistep model for the Protein Import Chimallivirus (PIC) pathway, where proteins are targeted to PicA by amino acids on their surface, and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely-related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts. Significance Statement The phage nucleus is an enclosed replication compartment built by Chimalliviridae phages that, similar to the eukaryotic nucleus, separates transcription from translation and selectively imports certain proteins. This allows the phage to concentrate proteins required for DNA replication and transcription while excluding DNA-targeting host defense proteins. However, the mechanism of selective trafficking into the phage nucleus is currently unknown. Here we determine the region of a phage nuclear protein that targets it for nuclear import and identify a conserved, essential nuclear shell-associated protein that plays a key role in this process. This work provides the first mechanistic model of selective import into the phage nucleus.
Collapse
|
13
|
Sarasa-Buisan C, Ochoa de Alda JAG, Velázquez-Suárez C, Rubio MÁ, Gómez-Baena G, Fillat MF, Luque I. An ancient bacterial zinc acquisition system identified from a cyanobacterial exoproteome. PLoS Biol 2024; 22:e3002546. [PMID: 38466754 PMCID: PMC10957091 DOI: 10.1371/journal.pbio.3002546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/21/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Bacteria have developed fine-tuned responses to cope with potential zinc limitation. The Zur protein is a key player in coordinating this response in most species. Comparative proteomics conducted on the cyanobacterium Anabaena highlighted the more abundant proteins in a zur mutant compared to the wild type. Experimental evidence showed that the exoprotein ZepA mediates zinc uptake. Genomic context of the zepA gene and protein structure prediction provided additional insights on the regulation and putative function of ZepA homologs. Phylogenetic analysis suggests that ZepA represents a primordial system for zinc acquisition that has been conserved for billions of years in a handful of species from distant bacterial lineages. Furthermore, these results show that Zur may have been one of the first regulators of the FUR family to evolve, consistent with the scarcity of zinc in the ecosystems of the Archean eon.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (Bifi), Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús A. G. Ochoa de Alda
- Didáctica de las Ciencias Experimentales y la Matemáticas, Universidad de Extremadura, Cáceres, Spain
| | | | - Miguel Ángel Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Guadalupe Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (Bifi), Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
14
|
Carvia-Hermoso C, Cuéllar V, Bernabéu-Roda LM, van Dillewijn P, Soto MJ. Sinorhizobium meliloti GR4 Produces Chromosomal- and pSymA-Encoded Type IVc Pili That Influence the Interaction with Alfalfa Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:628. [PMID: 38475474 DOI: 10.3390/plants13050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Type IVc Pili (T4cP), also known as Tad or Flp pili, are long thin microbial filaments that are made up of small-sized pilins. These appendages serve different functions in bacteria, including attachment, biofilm formation, surface sensing, motility, and host colonization. Despite their relevant role in diverse microbial lifestyles, knowledge about T4cP in bacteria that establish symbiosis with legumes, collectively referred to as rhizobia, is still limited. Sinorhizobium meliloti contains two clusters of T4cP-related genes: flp-1 and flp-2, which are located on the chromosome and the pSymA megaplasmid, respectively. Bundle-forming pili associated with flp-1 are involved in the competitive nodulation of alfalfa plants, but the role of flp-2 remains elusive. In this work, we have performed a comprehensive bioinformatic analysis of T4cP genes in the highly competitive S. meliloti GR4 strain and investigated the role of its flp clusters in pilus biogenesis, motility, and in the interaction with alfalfa. Single and double flp-cluster mutants were constructed on the wild-type genetic background as well as in a flagellaless derivative strain. Our data demonstrate that both chromosomal and pSymA flp clusters are functional in pili biogenesis and contribute to surface translocation and nodule formation efficiency in GR4. In this strain, the presence of flp-1 in the absence of flp-2 reduces the competitiveness for nodule occupation.
Collapse
Affiliation(s)
- Cristina Carvia-Hermoso
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Virginia Cuéllar
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lydia M Bernabéu-Roda
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pieter van Dillewijn
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - María J Soto
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
15
|
Shimamoto K, Fujikawa K, Osawa T, Mori S, Nomura K, Nishiyama KI. Key contributions of a glycolipid to membrane protein integration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:387-413. [PMID: 39085064 DOI: 10.2183/pjab.100.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Regulation of membrane protein integration involves molecular devices such as Sec-translocons or the insertase YidC. We have identified an integration-promoting factor in the inner membrane of Escherichia coli called membrane protein integrase (MPIase). Structural analysis revealed that, despite its enzyme-like name, MPIase is a glycolipid with a long glycan comprising N-acetyl amino sugars, a pyrophosphate linker, and a diacylglycerol (DAG) anchor. Additionally, we found that DAG, a minor membrane component, blocks spontaneous integration. In this review, we demonstrate how they contribute to Sec-independent membrane protein integration in bacteria using a comprehensive approach including synthetic chemistry and biophysical analyses. DAG blocks unfavorable spontaneous integrations by suppressing mobility in the membrane core, whereas MPIase compensates for this. Moreover, MPIase plays critical roles in capturing a substrate protein to prevent its aggregation, attracting it to the membrane surface, facilitating its insertion into the membrane, and delivering it to other factors. The combination of DAG and MPIase efficiently regulates the integration of membrane proteins.
Collapse
Affiliation(s)
- Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Tsukiho Osawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
16
|
Xiao X, Luo X, Huang C, Feng X, Wu M, Lu M, Kuang J, Peng S, Guo Y, Zhang Z, Hu Z, Zhou X, Chen M, Liu Z. Transcriptome analysis reveals the peptide toxins diversity of Macrothele palpator venom. Int J Biol Macromol 2023; 253:126577. [PMID: 37648132 DOI: 10.1016/j.ijbiomac.2023.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Spider venom is a large pharmacological repertoire of different bioactive peptide toxins. However, obtaining crude venom from some spiders is challenging. Thus, studying individual toxins through venom purification is a daunting task. In this study, we constructed the cDNA library and transcriptomic sequencing from the Macrothele palpator venom glands. Subsequently, 718 high-quality expressed sequence tags (ESTs) were identified, and grouped into three categories, including 449 toxin-like (62.53 %), 136 cellular component (18.94 %) and 133 non-matched (18.52 %) based on the gene function annotation. Additionally, 112 non-redundant toxin-like peptides were classified into 13 families (families A-M) based on their sequence homology and cysteine framework. Bioinformatics analysis revealed a high sequence similarity between families A-J and the toxins from Macrothele gigas in the NR database. In contrast, families K-M had a generally low sequence homology with known spider peptide toxins and unpredictable biological functions. Taken together, this study adds many new members to the spider toxin superfamily and provides a basis for identifying various potential biological tools in M. palpator venom.
Collapse
Affiliation(s)
- Xin Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xiaoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Cuiling Huang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xujun Feng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meijing Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Minjuan Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jiating Kuang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Siyi Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yingmei Guo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zixuan Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua College, Huaihua, Hunan 418008, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
17
|
Silchenko AS, Taran IV, Usoltseva RV, Zvyagintsev NV, Zueva AO, Rubtsov NK, Lembikova DE, Nedashkovskaya OI, Kusaykin MI, Isaeva MP, Ermakova SP. The Discovery of the Fucoidan-Active Endo-1→4-α-L-Fucanase of the GH168 Family, Which Produces Fucoidan Derivatives with Regular Sulfation and Anticoagulant Activity. Int J Mol Sci 2023; 25:218. [PMID: 38203394 PMCID: PMC10778895 DOI: 10.3390/ijms25010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Sulfated polysaccharides of brown algae, fucoidans, are known for their anticoagulant properties, similar to animal heparin. Their complex and irregular structure is the main bottleneck in standardization and in defining the relationship between their structure and bioactivity. Fucoidan-active enzymes can be effective tools to overcome these problems. In the present work, we identified the gene fwf5 encoding the fucoidan-active endo-fucanase of the GH168 family in the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. The biochemical characteristics of the recombinant fucanase FWf5 were investigated. Fucanase FWf5 was shown to catalyze the endo-type cleavage of the 1→4-O-glycosidic linkages between 2-O-sulfated α-L-fucose residues in fucoidans composed of the alternating 1→3- and 1→4-linked residues of sulfated α-L-fucose. This is the first report on the endo-1→4-α-L-fucanases (EC 3.2.1.212) of the GH168 family. The endo-fucanase FWf5 was used to selectively produce high- and low-molecular-weight fucoidan derivatives containing either regular alternating 2-O- and 2,4-di-O-sulfation or regular 2-O-sulfation. The polymeric 2,4-di-O-sulfated fucoidan derivative was shown to have significantly greater in vitro anticoagulant properties than 2-O-sulfated derivatives. The results have demonstrated a new type specificity among fucanases of the GH168 family and the prospects of using such enzymes to obtain standard fucoidan preparations with regular sulfation and high anticoagulant properties.
Collapse
Affiliation(s)
- Artem S. Silchenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Ilya V. Taran
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Roza V. Usoltseva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Nikolay V. Zvyagintsev
- Laboratory of Physical and Chemical Research Methods, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia
| | - Anastasiya O. Zueva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Nikita K. Rubtsov
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Dana E. Lembikova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Olga I. Nedashkovskaya
- Laboratory of Microbiology, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia;
| | - Mikhail I. Kusaykin
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| | - Marina P. Isaeva
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-Let Vladivostoku, 690022 Vladivostok, Russia (R.V.U.); (A.O.Z.); (N.K.R.); (D.E.L.); (M.I.K.)
| |
Collapse
|
18
|
Jiménez‐Guerrero I, López‐Baena FJ, Borrero‐de Acuña JM, Pérez‐Montaño F. Membrane vesicle engineering with "à la carte" bacterial-immunogenic molecules for organism-free plant vaccination. Microb Biotechnol 2023; 16:2223-2235. [PMID: 37530752 PMCID: PMC10686165 DOI: 10.1111/1751-7915.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
The United Nations heralds a world population exponential increase exceeding 9.7 billion by 2050. This poses the challenge of covering the nutritional needs of an overpopulated world by the hand of preserving the environment. Extensive agriculture practices harnessed the employment of fertilizers and pesticides to boost crop productivity and prevent economic and harvest yield losses attributed to plagues and diseases. Unfortunately, the concomitant hazardous effects stemmed from such agriculture techniques are cumbersome, that is, biodiversity loss, soils and waters contaminations, and human and animal poisoning. Hence, the so-called 'green agriculture' research revolves around designing novel biopesticides and plant growth-promoting bio-agents to the end of curbing the detrimental effects. In this field, microbe-plant interactions studies offer multiple possibilities for reshaping the plant holobiont physiology to its benefit. Along these lines, bacterial extracellular membrane vesicles emerge as an appealing molecular tool to capitalize on. These nanoparticles convey a manifold of molecules that mediate intricate bacteria-plant interactions including plant immunomodulation. Herein, we bring into the spotlight bacterial extracellular membrane vesicle engineering to encase immunomodulatory effectors into their cargo for their application as biocontrol agents. The overarching goal is achieving plant priming by deploying its innate immune responses thereby preventing upcoming infections.
Collapse
|
19
|
Theuretzbacher U, Blasco B, Duffey M, Piddock LJV. Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections. Nat Rev Drug Discov 2023; 22:957-975. [PMID: 37833553 DOI: 10.1038/s41573-023-00791-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 10/15/2023]
Abstract
Advances in areas that include genomics, systems biology, protein structure determination and artificial intelligence provide new opportunities for target-based antibacterial drug discovery. The selection of a 'good' new target for direct-acting antibacterial compounds is the first decision, for which multiple criteria must be explored, integrated and re-evaluated as drug discovery programmes progress. Criteria include essentiality of the target for bacterial survival, its conservation across different strains of the same species, bacterial species and growth conditions (which determines the spectrum of activity of a potential antibiotic) and the level of homology with human genes (which influences the potential for selective inhibition). Additionally, a bacterial target should have the potential to bind to drug-like molecules, and its subcellular location will govern the need for inhibitors to penetrate one or two bacterial membranes, which is a key challenge in targeting Gram-negative bacteria. The risk of the emergence of target-based drug resistance for drugs with single targets also requires consideration. This Review describes promising but as-yet-unrealized targets for antibacterial drugs against Gram-negative bacteria and examples of cognate inhibitors, and highlights lessons learned from past drug discovery programmes.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Maëlle Duffey
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland.
| |
Collapse
|
20
|
Theuretzbacher U. Evaluating the innovative potential of the global antibacterial pipeline. Clin Microbiol Infect 2023:S1198-743X(23)00490-1. [PMID: 37805036 DOI: 10.1016/j.cmi.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Resistance burden varies widely among WHO regions, and the potential impact of new antibiotics differs in addressing the WHO's critical priority pathogens' resistance challenge. OBJECTIVES To analyse the current global clinical pipeline in line with public and global health concerns and define innovation in antibacterial drug discovery. SOURCES Monitoring clinical pipelines since 2006, integrating peer-reviewed MEDLINE publications on clinical development of new antibacterial agents, supplemented with disclosed data from developers. CONTENT The current clinical pipeline is dominated by derivatives of established antibiotic classes, primarily β-lactamase inhibitor combinations in Phase 3 (six of ten which also include two beta-lactams without β-lactamase inhibitor). This pattern extends to Phase 1. Although incremental improvements in susceptibility rates among derivatives benefit patients in advanced health care systems within specific geographical regions, these concepts are not adequate for carbapenem-resistant strains of Enterobacterales (especially Klebsiella and Escherichia coli), Acinetobacter, and Pseudomonas. This limitation arises from the diverse distribution of resistance mechanisms across global regions. Innovation in this context refers to absence of cross-resistance because of class-specific resistance mechanisms. This can most likely be achieved by exploring new chemical classes and new targets/binding sites, and new mode of action. An initial glimpse of progress is evident as innovative agents progressed to Phase 1 clinical trials. However, an influx of more agents advancing to clinical development is essential given the inherent risks associated with novel chemistry and targets. IMPLICATIONS The limited innovation in the global clinical pipeline inadequately serves public and global health interests. The complexities of antibacterial drug discovery, from scientific challenges to financial constraints, underscore the need for collective researcher efforts and public support to drive innovation for patients globally.
Collapse
|
21
|
Byrne A, Bissonnette N, Ollier S, Tahlan K. Investigating in vivo Mycobacterium avium subsp. paratuberculosis microevolution and mixed strain infections. Microbiol Spectr 2023; 11:e0171623. [PMID: 37584606 PMCID: PMC10581078 DOI: 10.1128/spectrum.01716-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's Disease (JD) in ruminants, which is responsible for significant economic loss to the global dairy industry. Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with genetically distinct strains of a pathogen, whereas within-host changes in an infecting strain leading to genetically distinguishable progeny is called microevolution. The two processes can influence host-pathogen dynamics, disease progression and outcomes, but not much is known about their prevalence and impact on JD. Therefore, we obtained up to 10 MAP isolates each from 14 high-shedding animals and subjected them to whole-genome sequencing. Twelve of the 14 animals examined showed evidence for the presence of MSIs and microevolution, while the genotypes of MAP isolates from the remaining two animals could be attributed solely to microevolution. All MAP isolates that were otherwise isogenic had differences in short sequence repeats (SSRs), of which SSR1 and SSR2 were the most diverse and homoplastic. Variations in SSR1 and SSR2, which are located in ORF1 and ORF2, respectively, affect the genetic reading frame, leading to protein products with altered sequences and computed structures. The ORF1 gene product is predicted to be a MAP surface protein with possible roles in host immune modulation, but nothing could be inferred regarding the function of ORF2. Both genes are conserved in Mycobacterium avium complex members, but SSR1-based modulation of ORF1 reading frames seems to only occur in MAP, which could have potential implications on the infectivity of this pathogen. IMPORTANCE Johne's disease (JD) is a major problem in dairy animals, and concerns have been raised regarding the association of Mycobacterium avium subsp. paratuberculosis (MAP) with Crohn's disease in humans. MAP is an extremely slow-growing bacterium with low genome evolutionary rates. Certain short sequence repeats (SSR1 and SSR2) in the MAP chromosome are highly variable and evolve at a faster rate than the rest of the chromosome. In the current study, multiple MAP isolates with genetic variations such as single-nucleotide polymorphisms, and more noticeably, diverse SSRs, could simultaneously infect animals. Variations in SSR1 and SSR2 affect the products of the respective genes containing them. Since multiple MAP isolates can infect the same animal and the possibility that the pathogen undergoes further changes within the host due to unstable SSRs, this could provide a compensative mechanism for an otherwise slow-evolving pathogen to increase phenotypic diversity for overcoming host responses.
Collapse
Affiliation(s)
- Alexander Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Séverine Ollier
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
22
|
Sarnaik AP, Shinde S, Mhatre A, Jansen A, Jha AK, McKeown H, Davis R, Varman AM. Unravelling the hidden power of esterases for biomanufacturing of short-chain esters. Sci Rep 2023; 13:10766. [PMID: 37402758 DOI: 10.1038/s41598-023-37542-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Microbial production of esters has recently garnered wide attention, but the current production metrics are low. Evidently, the ester precursors (organic acids and alcohols) can be accumulated at higher titers by microbes like Escherichia coli. Hence, we hypothesized that their 'direct esterification' using esterases will be efficient. We engineered esterases from various microorganisms into E. coli, along with overexpression of ethanol and lactate pathway genes. High cell density fermentation exhibited the strains possessing esterase-A (SSL76) and carbohydrate esterase (SSL74) as the potent candidates. Fed-batch fermentation at pH 7 resulted in 80 mg/L of ethyl acetate and 10 mg/L of ethyl lactate accumulation by SSL76. At pH 6, the total ester titer improved by 2.5-fold, with SSL76 producing 225 mg/L of ethyl acetate, and 18.2 mg/L of ethyl lactate, the highest reported titer in E. coli. To our knowledge, this is the first successful demonstration of short-chain ester production by engineering 'esterases' in E. coli.
Collapse
Affiliation(s)
- Aditya P Sarnaik
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Somnath Shinde
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Abigail Jansen
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Amit Kumar Jha
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA
| | - Haley McKeown
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Ryan Davis
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA.
| | - Arul M Varman
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
23
|
Oliveira RNS, de Aguiar SRMM, Pauleta SR. Coordination of the N-Terminal Heme in the Non-Classical Peroxidase from Escherichia coli. Molecules 2023; 28:4598. [PMID: 37375153 DOI: 10.3390/molecules28124598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The non-classical bacterial peroxidase from Escherichia coli, YhjA, is proposed to deal with peroxidative stress in the periplasm when the bacterium is exposed to anoxic environments, defending it from hydrogen peroxide and allowing it to thrive under those conditions. This enzyme has a predicted transmembrane helix and is proposed to receive electrons from the quinol pool in an electron transfer pathway involving two hemes (NT and E) to accomplish the reduction of hydrogen peroxide in the periplasm at the third heme (P). Compared with classical bacterial peroxidases, these enzymes have an additional N-terminal domain binding the NT heme. In the absence of a structure of this protein, several residues (M82, M125 and H134) were mutated to identify the axial ligand of the NT heme. Spectroscopic data demonstrate differences only between the YhjA and YhjA M125A variant. In the YhjA M125A variant, the NT heme is high-spin with a lower reduction potential than in the wild-type. Thermostability was studied by circular dichroism, demonstrating that YhjA M125A is thermodynamically more unstable than YhjA, with a lower TM (43 °C vs. 50 °C). These data also corroborate the structural model of this enzyme. The axial ligand of the NT heme was validated to be M125, and mutation of this residue was proven to affect the spectroscopic, kinetic, and thermodynamic properties of YhjA.
Collapse
Affiliation(s)
- Ricardo N S Oliveira
- Microbial Stress Lab, UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sara R M M de Aguiar
- Microbial Stress Lab, UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
24
|
Grasso S, Dabene V, Hendriks MMW, Zwartjens P, Pellaux R, Held M, Panke S, van Dijl JM, Meyer A, van Rij T. Signal Peptide Efficiency: From High-Throughput Data to Prediction and Explanation. ACS Synth Biol 2023; 12:390-404. [PMID: 36649479 PMCID: PMC9942255 DOI: 10.1021/acssynbio.2c00328] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 01/18/2023]
Abstract
The passage of proteins across biological membranes via the general secretory (Sec) pathway is a universally conserved process with critical functions in cell physiology and important industrial applications. Proteins are directed into the Sec pathway by a signal peptide at their N-terminus. Estimating the impact of physicochemical signal peptide features on protein secretion levels has not been achieved so far, partially due to the extreme sequence variability of signal peptides. To elucidate relevant features of the signal peptide sequence that influence secretion efficiency, an evaluation of ∼12,000 different designed signal peptides was performed using a novel miniaturized high-throughput assay. The results were used to train a machine learning model, and a post-hoc explanation of the model is provided. By describing each signal peptide with a selection of 156 physicochemical features, it is now possible to both quantify feature importance and predict the protein secretion levels directed by each signal peptide. Our analyses allow the detection and explanation of the relevant signal peptide features influencing the efficiency of protein secretion, generating a versatile tool for the de novo design and in silico evaluation of signal peptides.
Collapse
Affiliation(s)
- Stefano Grasso
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, Groningen 9700 RB, The Netherlands
- DSM
Biotechnology Center, Alexander Fleminglaan 1, Delft 2613 AX, Netherlands
| | - Valentina Dabene
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse
26, Basel 4058, Switzerland
- FGen
AG, Hochbergerstrasse
60C, Basel 4057, Switzerland
| | | | - Priscilla Zwartjens
- DSM
Biotechnology Center, Alexander Fleminglaan 1, Delft 2613 AX, Netherlands
| | - René Pellaux
- FGen
AG, Hochbergerstrasse
60C, Basel 4057, Switzerland
| | - Martin Held
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse
26, Basel 4058, Switzerland
| | - Sven Panke
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse
26, Basel 4058, Switzerland
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, Groningen 9700 RB, The Netherlands
| | - Andreas Meyer
- FGen
AG, Hochbergerstrasse
60C, Basel 4057, Switzerland
| | - Tjeerd van Rij
- DSM
Biotechnology Center, Alexander Fleminglaan 1, Delft 2613 AX, Netherlands
| |
Collapse
|
25
|
Misal SA, Ovhal SD, Li S, Karty JA, Tang H, Radivojac P, Reilly JP. Non-Specific Signal Peptidase Processing of Extracellular Proteins in Staphylococcus aureus N315. Proteomes 2023; 11:proteomes11010008. [PMID: 36810564 PMCID: PMC9944065 DOI: 10.3390/proteomes11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Staphylococcus aureus is one of the major community-acquired human pathogens, with growing multidrug-resistance, leading to a major threat of more prevalent infections to humans. A variety of virulence factors and toxic proteins are secreted during infection via the general secretory (Sec) pathway, which requires an N-terminal signal peptide to be cleaved from the N-terminus of the protein. This N-terminal signal peptide is recognized and processed by a type I signal peptidase (SPase). SPase-mediated signal peptide processing is the crucial step in the pathogenicity of S. aureus. In the present study, the SPase-mediated N-terminal protein processing and their cleavage specificity were evaluated using a combination of N-terminal amidination bottom-up and top-down proteomics-based mass spectrometry approaches. Secretory proteins were found to be cleaved by SPase, specifically and non-specifically, on both sides of the normal SPase cleavage site. The non-specific cleavages occur at the relatively smaller residues that are present next to the -1, +1, and +2 locations from the original SPase cleavage site to a lesser extent. Additional random cleavages at the middle and near the C-terminus of some protein sequences were also observed. This additional processing could be a part of some stress conditions and unknown signal peptidase mechanisms.
Collapse
Affiliation(s)
- Santosh A. Misal
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
- Correspondence: ; Tel.: +1-301-761-7277
| | - Shital D. Ovhal
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Sujun Li
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
| | - Jonathan A. Karty
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Haixu Tang
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
| | - Predrag Radivojac
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
- Khoury College of Computer Sciences, Northeastern University, 177 Huntington Avenue, Boston, MA 02115, USA
| | - James P. Reilly
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| |
Collapse
|